A. Lafleur-Lambert et al. / Tetrahedron Letters 52 (2011) 5008–5011
5011
Acknowledgments
We thank the National Science and Engineering Council of
Canada (NSERC) through the NRC-BDC-NSERC Initiative program
for funding, and the Centre Québécois sur les Matériaux Fonction-
nels (CQMF). Simon Rondeau-Gagné thanks the NSERC for PhD
scholarship. We thank David Gendron (U. Laval) and Pierre-Olivier
Morin (U. Laval) for help in DT-DPP synthesis and for thin film cyclo-
voltammetry. We also thank Prof. M. Leclerc (U. Laval) for helpful
discussions and Philippe Dufour (U. Laval) for HRMS measurements.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
Figure 3. Calculated molecular orbitals for compounds 1 and 4.
1. (a) Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985,
318, 162–163; (b) Wudl, F. J. Mater. Chem. 2002, 12, 1959–1963.
2. (a) Frechet, J. M. J.; Thompson, B. C. Angew. Chem., Int. Ed. 2008, 47, 58–77; (b)
Backer, S. A.; Sivula, K.; Kavulak, D. F.; Fréchet, J. M. J. Chem. Mater. 2007, 19,
2927–2929; (c) Kooistra, F. B.; Knol, J.; Kastenberg, F.; Popescu, L. M.; Verhees,
W. J. H.; Kroon, J. M.; Hummelen, J. C. Org. Lett. 2007, 9, 551–554.
3. (a) Anderson, H. L.; Faust, R.; Rubin, Y.; Diederich, F. Angew. Chem., Int. Ed. Engl.
1994, 33, 1366–1368; (b) Anderson, H. L.; Boudon, C.; Diederich, F.;
Gisselbrecht, J.-P.; Gross, M.; Seiler, P. Angew. Chem., Int. Ed. Engl. 1994, 33,
1628–1632; (c) Murata, Y.; Motoyama, K.; Komatsu, K. Tetrahedron 1996, 52,
5077–5090.
In the aim of investigating the electronic structure of com-
pounds 1 and 4 in a more detailed fashion, Density Functional The-
ory (DFT) calculations were performed using DMol3 from Accelrys,
using the BLYP functional. The physical wave functions were ex-
panded in terms of double numerical polarized basis set with an
orbital cutoff of 4.0 Å in the DMol3 method.4b This numerical basis
set is equivalent in size and quality to the more current 6-31G⁄⁄ ba-
sis set. Becke exchange and Lee–Yang–Parr 1988 correlation
functional (BLYP)16 were used at the generalized gradient approx-
imation (GGA) level. Results are shown in Figure 3. As expected,
the HOMO on compound 1 is fully localized on the DT-DPP unit
while the LUMO is fully localized on the C60 cage. This result sug-
gests that there is only weak electronic communication between
the DT-DPP and the C60 cage and this correlates well with the elec-
trochemical and UV–vis results. These calculations strengthened
our hypothesis suggesting that the influence of the DT-DPP unit
on the LUMO energy level of C60 is likely to be attributed to an
electron-donating inductive effect.
4. (a) Rondeau-Gagne, S.; Curutchet, C.; Grenier, F.; Scholes, G.; Morin, J.-F.
Tetrahedron 2010, 66, 4230–4242; (b) Rondeau-Gagne, S.; Lafleur-Lambert, A.;
Soldera, A.; Morin, J.-F. New J. Chem. 2011, 35, 942–947.
5. Anthony, J. E. Chem. Mater. 2011, 23, 583–590.
6. For representative examples, see: (a) Bijleveld, J. C.; Karsten, B.; Mathijssen, S.;
Wienk, M. M.; de Leeuw, D. M.; Janssen, R. J. J. Mater. Chem. 2011, 21, 1600–
1606; (b) Jo, J.; Gendron, D.; Najari, A.; Moon, J. S.; Cho, S.; Leclerc, M.; Heeger,
A. J. Appl. Phys. Lett. 2010, 97, 203303; (c) Zou, Y.; Gendron, D.; Badrou-Aïch, R.;
Najari, A.; Tao, Y.; Leclerc, M. Macromolecules 2009, 42, 2891–2894; (d) Wienk,
M. M.; Turbiez, M.; Gilot, J.; Janssen, R. A. J. Adv. Mater. 2008, 20, 2556–2560.
7. Russell, D. M.; Newsome, C. J.; Li, S. P.; Kugler, T.; Ishida, M.; Shimoda, T. Appl.
Phys. Lett 2005, 87, 222109/1–222109/3; (a) Smith, J.; Hamilton, R.; Qi, Y.;
Kahn, A.; Bradley, D.; Heeney, M.; McCulloch, I.; Anthopoulos, T. D. Adv. Funct.
Mater. 2010, 20, 2330–2337.
8. Karsten, B. P.; Bouwer, R. K. M.; Hummelen, J. C.; Williams, R. M.; Janssen, R. A.
J. Photochem. Photobiol. Sci. 2010, 9, 1055–1065.
9. (a) Iqbal, A.; Jost, M.; Kirchmayr, R.; Pfenninger, J. A.; Rochat, A.; Wallquist, O.
Bull. Soc. Chim. Belg. 1988, 97, 615–643; (b) Yamamoto, H.; International Patent,
2004, WO2004/090046.
10. Yang, J.; Ng, M.-K. Synthesis 2006, 3075–3079.
11. Loser, S.; Bruns, C. J.; Miyauchi, H.; Ortiz, R. P.; Facchetti, A.; Stupp, S. I.; Marks,
T. J. J. Am. Chem. Soc. 2011, 133, 8142.
12. (a) Shirai, Y.; Zhao, Y.; Cheng, L.; Tour, J. M. Org. Lett. 2004, 2129–2132; (b)
Shirai, Y.; Sasaki, T.; Guerrero, J. M.; Yu, B.-C.; Hodge, P.; Tour, J. M. ACS Nano
2008, 2, 97–106.
13. Ashraf, R. S.; Shahid, M.; Klemm, E.; Al-Ibrahim, M.; Sensfuss, S. Macromol.
Rapid Commun. 2006, 27, 1454–1459.
14. Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T. M.; Rispens,
T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374–380.
15. Zhao, Y.; Shirai, Y.; Slepkov, A.; Cheng, L.; Alemany, L.; Sasaki, T.; Hegmann, F.;
Tour, J. M. Chem. Eur. J. 2005, 11, 3643–3658.
Conclusions
In summary, we report the synthesis of a monosubstituted 3,6-
dithiophen-2-yl-2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione deriv-
ative bearing
electrochemical and optical properties and an increased LUMO en-
ergy level compared to the well-known PCBM. This last feature
makes this material very promising for the further development
of efficient BHJ solar cells and testing in such devices using this
a C60. This new material exhibits interesting
material in combination with p-conjugated polymers is underway.
16. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.