10.1002/chem.202000622
Chemistry - A European Journal
COMMUNICATION
sulfonium ylide starting materials are distinctive characteristics of
this process. Interestingly, this process appears to supersede the
previously reported Au(I)-catalyzed intramolecular furan and
cyclopropane syntheses. The retention of the sulfur atom onto the
final product after the reaction is an unusual trait of metal-
catalyzed transformations of sulfonium ylides and enables the
development of atom-economical synthetic transformations.
[24]
[25]
X. Huang, S. Klimczyk, N. Maulide, Synthesis 2012, 44, 175–183.
R. Oost, J. D. Neuhaus, A. Misale, R. Meyrelles, L. F. Veiros, N. Maulide,
Chem. Sci. 2018, 9, 7091–7095.
[26]
[27]
[28]
[29]
J. Sabbatani, X. Huang, L. F. Veiros, N. Maulide, Chem. Eur. J. 2014,
20, 10636–10639.
X. Huang, S. Klimczyk, L. F. Veiros, N. Maulide, Chem. Sci. 2013, 4,
1105.
S. Klimczyk, X. Huang, H. Kählig, L. F. Veiros, N. Maulide, J. Org. Chem.
2015, 80, 5719–5729.
Acknowledgements
S. Klimczyk, A. Misale, X. Huang, N. Maulide, Angew. Chem. Int. Ed.
2015, 54, 10365–10369.
Generous support of this research by the FWF (DK MolTag
W1232), the ERC (StG FLATOUT and CoG VINCAT 682002 to
N.M.) and the SOCRATES-Erasmus program (fellowship to T.S.)
is acknowledged. We are very grateful to the University of Vienna
for continued support of our research programs. We also thank S.
Heindl for starting material synthesis.
[30]
[31]
I. Klose, A. Misale, N. Maulide, J. Org. Chem. 2016, 81, 7201–7210.
X. Huang, B. Peng, M. Luparia, L. F. R. Gomes, L. F. Veiros, N. Maulide,
Angew. Chem. Int. Ed. 2012, 51, 8886–8890.
[32]
(a) A. S. K. Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem.
Int. Ed. 2000, 39, 2285–2288; (b) A. S. K. Hashmi, T. M. Frost, J. W.
Bats, J. Am. Chem. Soc. 2000, 122, 11553–11554; (c) J. Zhang, H.‐G.
Schmalz, Angew. Chem. Int. Ed. 2006, 45, 6704–6707; (d) A. S. K.
Hashmi, T. Häffner, M. Rudolph, F. Rominger, Eur. J. Org. Chem. 2011,
667–671; (e) S. Kramer, T. Skrydstrup, Angew. Chem. Int. Ed. 2012, 51,
4681–4684; (f) T. Wang, S. Shi, M. M. Hansmann, E. Rettenmeier, M.
Rudolph, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2014, 53, 3715–3719.
The easily accesible sulfonium ylides 1a–l were synthesized in 22–99%
yield from the corresponding sulfoxides 4a–e and 1,3-dicarbonyl
compounds in the presence of Tf2O. See the synthesis of 1a as a
representative example:
Keywords: alkynes • benzothiepines • gold • rearrangement •
sulfonium ylides
[1]
[2]
[3]
A. W. Johnson, R. B. LaCount, Chem. Ind. 1958, 1440−1441.
A. W. Johnson, R. B. LaCount, J. Am. Chem. Soc. 1961, 83, 417–423.
A. W. Johnson, V. J. Hruby, J. L. Williams, J. Am. Chem. Soc. 1964, 86,
918–922.
[33]
[4]
[5]
[6]
[7]
E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1962, 84, 3782–3783.
E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353–1364.
X.-L. Sun, Y. Tang, Acc. Chem. Res. 2008, 41, 937–948.
E. M. McGarrigle, E. L. Myers, O. Illa, M. A. Shaw, S. L. Riches, V. K.
Aggarwal, Chem. Rev. 2007, 107, 5841–5883.
[8]
D. Kaiser, I. Klose, R. Oost, J. Neuhaus, N. Maulide, Chem. Rev. 2019,
119, 8701–8780.
For more details on the ylides synthesis, see the SI.
[9]
J. D. Neuhaus, R. Oost, J. Merad, N. Maulide, Top. Curr. Chem. 2018,
376, 15.
[34]
For biological studies on benzothiepines see: (a) B. K. Sharma, P. Singh,
P. Pilania, K. Sarbhai, Y. S. Prabhakar, Mol. Divers. 2010, 15, 135–147;
(b) H.-C. Huang, S. J. Tremont, L. F. Lee, B. T. Keller, A. J. Carpenter,
C.-C. Wang, S. C. Banerjee, S. R. Both, T. Fletcher, D. J. Garland, et
al., J. Med. Chem. 2005, 48, 5837–5852; (c) H.-C. Huang, S. J. Tremont,
L. F. Lee, B. T. Keller, A. J. Carpenter, C.-C. Wang, S. C. Banerjee, S.
R. Both, T. Fletcher, D. J. Garland, et al., J. Med. Chem. 2005, 48, 5853–
5868.
[10]
[11]
[12]
[13]
L.-Q. Lu, T.-R. Li, Q. Wang, W.-J. Xiao, Chem. Soc. Rev. 2017, 46,
4135–4149.
Y. G. Gololobov, A. N. Nesmeyanov, V. P. lysenko, I. E. Boldeskul,
Tetrahedron 1987, 43, 2609–2651.
V. K. Aggarwal, E. Alonso, G. Hynd, K. M. Lydon, M. J. Palmer, M.
Porcelloni, J. R. Studley, Angew. Chem. Int. Ed. 2001, 40, 1430–1433.
V. K. Aggarwal, J. P. H. Charmant, D. Fuentes, J. N. Harvey, G. Hynd,
D. Ohara, W. Picoul, R. Robiette, C. Smith, Jean-Luc Vasse, et al., J.
Am. Chem. Soc. 2006, 128, 2105–2114.
[35]
For prior syntheses of benzothiepines see: metal-catalyzed; (a) N. D.
Shapiro, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 4160–4161; (b) G.
Li, L. Zhang, Angew. Chem. Int. Ed. 2007, 46, 5156–5159; (c) B. Lu, Y.
Li, Y. Wang, D. H. Aue, Y. Luo, L. Zhang, J. Am. Chem. Soc. 2013, 135,
8512–8524; (d) D. Chen, G. Xing, H. Zhou, Org. Chem. Front. 2015, 2,
947–950; (e) A. Peneau, C. Guillou, L. Chabaud, Eur. J. Org. Chem.
2018, 2018, 5777–5794; (f) T. Inami, T. Takahashi, T. Kurahashi, S.
Matsubara, J. Am. Chem. Soc. 2019, 141, 12541–12544;
organocatalytic processes; (g) L. Li, Z. Li, Q. Wang, Synlett 2009, 2009,
1830–1834; others; (h) V. J. Traynelis, Y. Yoshikawa, S. M. Tarka, J. R.
Livingston, J. Org. Chem. 1973, 38, 3986–3990; (i) I. Murata, T.
Tatsuoka, Tetrahedron Lett. 1975, 16, 2697–2700; (j) Y. Tamura, Y.
Takebe, C. Mukai, M. Ikeda, J. Chem. Soc. Perkin Trans. 1 1981, 2978;
(k) C.-C. Wang, J. J. Li, H.-C. Huang, L. F. Lee, D. B. Reitz, J. Org.
Chem. 2000, 65, 2711–2715.
[14]
[15]
[16]
D. M. Badine, C. Hebach, V. K. Aggarwal, Chem. Asian J. 2006, 1, 438–
444.
M. Davoust, J.-F. Brière, P. Metzner, Org. Biomol. Chem. 2006, 4, 3048–
3051.
O. Illa, M. Arshad, A. Ros, E. M. McGarrigle, V. K. Aggarwal, J. Am.
Chem. Soc. 2010, 132, 1828–1830.
[17]
[18]
A.-H. Li, L.-X. Dai, V. K. Aggarwal, Chem. Rev. 1997, 97, 2341–2372.
R. K. Kunz, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 3240–
3241.
[19]
[20]
V. K. Aggarwal, E. Grange, Chem. Eur. J. 2006, 12, 568–575.
V. K. Aggarwal, E. Alonso, G. Fang, M. Ferrara, G. Hynd, M. Porcelloni,
Angew. Chem. Int. Ed. 2001, 40, 1433–1436.
[21]
D. Morton, D. Pearson, R. A. Field, R. A. Stockman, Chem. Commun.
2006, 1833.
[36]
[37]
[38]
An increase of temperature was not beneficial for the reaction and led to
increased amounts of furan side product. See the SI for details.
M. Pernpointner, A. S. K. Hashmi, J. Chem. Theory Comput. 2009, 5,
2717–2725.
[22]
[23]
R. Robiette, J. Org. Chem. 2006, 71, 2726–2734.
A.-H. Li, Y.-G. Zhou, L.-X. Dai, X.-L. Hou, L.-J. Xia, L. Lin, Angew. Chem.
Int. Ed. Engl. 1997, 36, 1317–1319.
A. S. K. Hashmi, A. M. Schuster, F. Rominger, Angew. Chem. Int. Ed.
This article is protected by copyright. All rights reserved.
3