Addition of Diethylzinc to R-Substituted Aldehydes
5.5 mmol), and N-methylpiperazine (1.1 mL, 10 mmol) in CH
CN (2.5 mL) was heated at 80 °C during 24 h and treated as
described for 4a to give 0.20 g (54%) of (R)-4b as white
crystals: The enantiomeric purity was determined by HPLC
analysis (column, Chiralcel-OD; eluent, hexane/2-propanol 99:
J . Org. Chem., Vol. 63, No. 20, 1998 7081
1
3
-
(1 mmol) at room temperature. The mixture was stirred for
20 min and then cooled to the desired temperature if necessary.
Diethylzinc (2.2 mL of a 1 M hexanes solution, 2.2 mmol) was
added dropwise. The mixture was stirred for the correspond-
ing reaction time under N
the addition of a saturated NH
mixture was then extracted with CH
combined organic extracts were dried and concentrated in
vacuo. Conversion, selectivity, and enantiomeric purity of the
resulting alcohols was determined from the crude mixture by
GC analyses. Conditions of GC analyses: Supelco â-DEX or
R-DEX 120 column, 30 m length, 0.25 mm inner diameter,
isotherm temperature program, He as carrier gas (2.4 mL/
2
. The reaction was quenched by
Cl solution (10 mL). The
Cl
(3 × 10 mL), and the
1
; flow rate, 0.5 mL/min; R isomer, t
R
8.7 min, and S isomer,
4
2
3
t
R
11.2 min) and found to be >99.9%: mp 154 °C; [R]
D
)
2
2
1
-
121.6 (c ) 1.02 in CHCl
3
); H NMR (300 MHz, CDCl
3
) δ 7.77
(
d, J ) 8.7 Hz, 2H), 7.00-7.40 (m, 13H), 5.60 (s, 1H), 4.66 (s,
1
3
1
H), 2.30-2.50 (m, 8H), 2.22 (s, 3H); C NMR (75 MHz,
) δ 149.1 (C), 145.6 (C), 137.3 (C), 131.0 (CH), 128.0 (CH),
27.5 (CH), 127.2 (CH), 127.0 (CH), 126.4 (CH), 126.2 (CH),
25.6 (CH), 125.4 (CH), 78.6 (C), 76.6 (CH), 55.7 (CH ), 53.0
), 45.7 (CH ); IR (KBr) 3400, 2950, 2790, 1495, 1449, 1138,
001, 743, 704 cm-1; MS (CI, NH
00). Anal. Calcd for C25 O: C, 80.61; H, 7.57; N, 7.52.
CDCl
1
1
3
2
(CH
2
3
min). For 1-phenylpropanol: â-DEX 120 column, 112 °C, t
R isomer 49.3 min, t S isomer 52.0 min. For 1-(o-tolyl)-
propanol: â-DEX 120 column, 120 °C, t R isomer 59.1 min,
S isomer 63.8 min. For 1-(m-tolyl)propanol: â-DEX 120
column, 120 °C, t R isomer 52.2 min, t S isomer 53.8 min.
For 1-(p-tolyl)propanol: â-DEX 120 column, 120 °C, t
isomer 50.4 min, t S isomer 53.3 min. For 1-(2-methoxyphe-
nyl)propanol: â-DEX 120 column, 135 °C, t S isomer 48.1 min,
R isomer 54.1 min. For 1-(3-methoxyphenyl)propanol:
â-DEX 120 column, 135 °C, t R isomer 66.2 min, t S isomer
68.0 min. For 1-(4-methoxyphenyl)propanol: â-DEX 120
column, 135 °C, t R isomer 68.2 min, t S isomer 70.4 min.
For 1-(2-fluorophenyl)propanol: â-DEX 120 column, 112 °C,
R isomer 51.0 min, t S isomer 54.5 min. For 1-(3-
fluorophenyl)propanol: â-DEX 120 column, 112 °C, t R isomer
60.0 min, t S isomer 63.2 min. For 1-(4-fluorophenyl)-
propanol: â-DEX 120 column, 112 °C, t R isomer 57.3 min,
S isomer 61.2 min. For 1-(1-naphthyl)propanol: â-DEX 120
column, 160 °C, t S isomer 98.9 min, t R isomer 103.2 min.
For 1-(2-naphthyl)propanol: â-DEX 120 column, 160 °C, t
isomer 100.2 min, t S isomer 102.4 min. For 5-methyl-3-
hexanol: R-DEX 120 column, 65 °C, t R isomer 15.1 min, t
S isomer 15.5 min. For 1-(3-cyclohexenyl)propanol: â-DEX
120 column, 100 °C, t S isomer 69.8-70.6 min, t R isomer
74.2-74.4 min. For (E)-1-phenyl-2-methyl-pent-1-en-3-ol: (ac-
etate derivative) â-DEX 120 column, 140 °C, t S isomer 54.3
min, t R isomer 55.7 min. For 4-ethyl-3-hexanol: (acetate
derivative) â-DEX 120 column, 65 °C, t S isomer 46.9 min, t
R isomer 49.7 min. For 1-cyclohexylpropanol: R-DEX 120
column, 90 °C, t R isomer 41.7 min, t S isomer 43 min. For
3-nonanol: R-DEX 120 column, 70 °C, t R isomer 71.9 min,
S isomer 74.3 min. For 1-phenyl-3-pentanol: R-DEX 120
column, 118 °C, t R isomer 64.5 min, t S isomer 65.7 min.
R
+
1
1
3
) m/z 373 (C25
H
28
N
2
O‚H ,
R
H
28
N
2
R
Found: C, 80.46; H, 7.61; N, 7.53.
R )-2-(4-P h e n ylp ip e r a zin -1-yl)-1,1,2-t r ip h e n yle t h a -
n ol (4c). A mixture of (S)-3 (0.27 g, 1.00 mmol), LiClO (1.65
g, 15.5 mmol), and N-phenylpiperazine (1.53 mL, 10 mmol) in
CH CN (2.5 mL) was heated at 80 °C during 24 h and treated
as described for 4a to give 0.122 g (28%) of (R)-4c as white
t
R
(
R
R
4
R
R
R
3
R
t
R
2
3
1
crystals: mp 181 °C; [R]
D
) -92.6 (c ) 0.225 in CHCl
) δ 7.73 (d, J ) 8.4 Hz, 2H), 6.80-7.34
m, 18H), 5.40 (bs, 1H), 4.66 (s, 1H), 2.98-3.03 (m, 4H), 2.53-
3
); H
R
R
NMR (300 MHz, CDCl
3
(
2
1
R
R
.61 (m, 2H), 2.22-2.30 (m, 2H); 13C NMR (75 MHz, CDCl
51.0 (C), 149.0 (C), 145.6 (C), 137.2 (C), 131.0 (CH), 129.0
) δ
3
t
R
R
(
(
(
CH), 128.1 (CH), 127.7 (CH), 127.3 (CH), 127.1 (CH), 126.4
CH), 126.3 (CH), 125.7 (CH), 125.5 (CH), 119.6 (CH), 115.7
R
R
CH), 78.8 (C), 76.7 (CH), 53.0 (CH
450, 2830, 2800, 1599, 1495, 1449, 1237, 1001, 764, 700 cm
2
), 49.6 (CH
2
); IR (KBr)
R
-
1
3
;
t
R
+
MS (CI, NH
C
3
) m/z 435 (C30
O: C, 82.91; H, 6.96; N, 6.45. Found: C, 82.83; H,
H
30
N
2
O‚H , 100). Anal. Calcd for
R
R
30
H
30
N
2
R
R
6
.86; N, 6.44.
R
Lit h iu m P er ch lor a t e-In d u ced R egioselect ive R in g
Op en in g of (S)-3. Meth od B. (R)-2-P ip er id in o-1,1,2-tr i-
p h en yleth a n ol (4a ). A mixture of (S)-3 (10.88 g, 0.04 mol),
R
R
R
R
LiClO
heated at 100 °C under N
distilled under reduced pressure. The residue was dissolved
in CH Cl
(250 mL), washed with water (2 × 100 mL), dried
Na SO ), and concentrated under reduced pressure to give
crude product. The residual solid was purified by chromatog-
raphy in SiO /Et N (2.5% v/v) using hexane/EtOAc (100: 0-95:
) as eluent to afford 14.02 g (98%) of (R)-4a as white crystals.
R)-2-(4-Meth ylp ip er a zin -1-yl)-1,1,2-tr ip h en yleth a n ol
4b). A mixture of (S)-3 (0.50 g, 1.84 mmol), LiClO (0.39 g,
.67 mmol, 2 equiv) and N-methypiperazine (7.1 mL, 64 mmol,
5 equiv) was heated at 100 °C during 24 h and treated as
4
(8.5 g, 0.08 mol), and piperidine (40 mL, 0.4 mol) was
2
. After 24 h, the excess amine was
R
R
2
2
R
R
(
2
4
R
R
2
3
R
5
t
R
(
R
R
(
4
To establish the absolute configuration of the final com-
pounds, the alcohols were purified by bulb-to-bulb distillation
of the crude mixtures. The optical rotation was measured in
each case, and its sign was compared with the reported value
3
3
described for 4a to give 0.66 g (96%) of (R)-4b as white crystals.
R )-2-(4-P h e n ylp ip e r a zin -1-yl)-1,1,2-t r ip h e n yle t h a -
n ol (4c). A mixture of (S)-3 (0.54 g, 2.0 mmol), LiClO (0.42
1
3f
15a
(
(S)-1-phenylpropanol,
(S)-1-(o-tolyl)propanol,
(S)-1-(m-
1
5b
15c
4
tolyl)propanol, (S)-1-(p-tolyl)propanol, (R)-1-(2-methoxyphen-
yl)propanol,1 (S)-1-(4-methoxyphenyl)propanol, (R)-1-(2-fluor-
5d
15c
g, 4.0 mmol), and N-phenylpiperazine (3.1 mL, 20 mmol) was
heated at 100 °C during 24 h and treated as described for 4a
to give 0.83 g (96%) of (R)-4c as white crystals after chroma-
tography.
ophenyl)propanol,1 (R)-1-(4-fluorophenyl)propanol,
5e
13h
15g
(R)-1-
1
5f
(1-naphthyl)propanol, (R)-1-(2-naphthyl)propanol,
(S)-5-
methyl-3-hexanol,1 (S)-1-cyclohexylpropanol, (S)-3-nonanol,
3e
13d
15h
(S)-1-phenyl-3-pentanol,1 and (S)-4-ethyl-3-hexanol.
5i
13g
For
(
R)-2-Mor p h olin o-1,1,2-tr ip h en yleth a n ol (4d ). A mix-
ture of (S)-3 (0.50 g, 1.84 mmol), LiClO (0.39 g, 3.67 mmol, 2
4
(R)-(E)-1-phenyl-2-methylpent-1-en-3-ol retention times of ac-
1
3l
equiv) and morpholine (6 mL, 60 mmol, 35 equiv) was heated
at 100 °C during 24 h and treated as described for 4a to give
etate derivative were compared with reported values.
For
6b,f,h ,r , the absolute configuration was assumed to be S.
2
3
0
.57 g (86%) of (R)-4d as white crystals: mp 176 °C; [R]
D
)
(
b) Typ ica l P r oced u r e for P r ep a r a tive Exp er im en ts:
1
-
7
4
(
(
(
118.6 (c ) 0.545 in CHCl
3
); H NMR (300 MHz, CDCl
3
) δ
13d
(
S)-1-Cycloh exylp r op a n ol (6q).
To a solution of 4a (22
.70 (d, J ) 8.7 Hz, 2H), 7.00-7.30 (m, 13H), 5.42 (s, 1H),
.57 (s, 1H), 3.48-3.52 (m, 4H), 2.30-2.40 (m, 2H), 2.10-2.20
m, 2H); C NMR (75 MHz, CDCl ) δ 149 (C), 145.6 (C), 137.0
3
C), 131.0 (CH), 128.1 (CH), 127.6 (CH), 127.3 (CH), 127.2
CH), 126.4 (CH), 126.3 (CH), 125.6 (CH), 125.4 (CH), 78.7 (C),
mg, 0.06 mmol) in toluene (2 mL) was added cyclohexanecar-
baldehyde 5q (112 mg, 120 µL, 1 mmol) at ambient temper-
1
3
(
15) (a) Chelucci, G.; Conti, S.; Falorni, M.; Giacomelli, G. Tetrahe-
dron 1991, 47, 8251-8257. (b) Chaloner, P. A.; Perera, S. A. R.
Tetrahedron Lett. 1987, 28, 3013-3014. (c) Capillon, J .; Gu e´ tt e´ , J . P.
Tetrahedron 1979, 35, 1817-1820. (d) Smaardijk, A. A.; Wynberg, H.
J . Org. Chem. 1987, 52, 135-137. (e) Seebach, D.; Beck, A. K.; Schmidt,
B.; Wang, Y. M. Tetrahedron 1994, 50, 4363-4384. (f) Niwa, S.; Soai,
K. J . Chem. Soc., Perkin Trans. 1 1991, 2717-2720. (g) Oguni, N.;
Omi, T.; Yamamoto, Y.; Nakamura, A. Chem. Lett. 1983, 841-842.
h) Soai, K.; Niwa, S.; Watanabe, M. J . Org. Chem. 1988, 53, 927-8.
(i) Sato, T.; Gotoh, T.; Wakabayashi, Y.; Fujisawa, T. Tetrahedron Lett.
1983, 24, 4123-4126.
7
1
7.1 (CH), 67.3 (CH
2 2
), 53.7 (CH ); IR (KBr) 3450, 2846, 1495,
-
1
451, 1318, 1119, 999, 740, 704 cm ; MS (CI, NH
3
) m/z 360
: C, 80.19;
+
(C
24
H
25NO
2
‚H , 100). Anal. Calcd for C24
H
25NO
2
H, 7.01; N, 3.90. Found: C, 80.03; H, 7.01; N, 3.93.
En a n tioselective Am in o Alcoh ol-Ca ta lyzed Ad d ition
of Dieth yzin c to Ald eh yd es. (a ) Gen er a l P r oced u r e for
An a lytica l Exp er im en ts. To a solution of the chiral catalyst
(
(0.06 mmol, 6 mol %) in toluene (2 mL) was added the aldehyde