128
Y. Nakamura et al. / Journal of Fluorine Chemistry 120 (2003) 121–129
[
[
2] I.T. Horv a´ th, J. R a´ vai, Science 266 (1994) 72–75.
reaction did not proceed at all, probably because of inactiva-
tion of the catalyst by ligand oxidation (entry 5). (R)-
F BINAP was demonstrated to have been oxidized in the
3] (a) E. de Wolf, A.L. Spek, B.W.M. Kuipers, A.P. Philipse, J.D.
Meeldijk, P.H.H. Bomans, P.M. Frederik, B.-J. Deelman, G. van
Koten, Tetrahedron 58 (2002) 3911–3922;
1
3
FC-72 phase by monitoring with TLC. The color change of
the FC-72 phase from wine-red to brown midway in the first
reaction suggested the inactivation of the catalyst as well.
In conclusion, we have prepared highly fluorinated chiral
BINOLs, (R)-F BINOL and (R)-F BINOL, and BINAP,
(
b) D.F. Foster, D. Gudmunsen, D.J. Adams, A.M. Stuart, E.G.
Hope, D.J. Cole-Hamilton, G.P. Schwart, P. Pogorzelec, Tetrahedron
8 (2002) 3901–3910;
c) T. Mathivet, E. Monflier, Y. Castanet, A. Mortreux, J.-L.
Couturier, Tetrahedron 58 (2002) 3877–3887;
d) D. Schwinn, W. Bannwarth, Helv. Chim. Acta 85 (2002) 255–264;
5
(
1
3
17
(
(
R)-F BINAP, and applied them to catalytic asymmetric
13
(e) D. Sinou, D. Maillard, G. Pozzi, Eur. J. Org. Chem. (2002) 269–
275.
C–C bond forming reactions. The FBINOLs were examined
in the consecutive reactions by using fluorous–organic
biphase and fluorous solid phase extraction techniques. In
the biphase system, we obtained an enantioselectivity near
maximum value that was attained in non-fluorous uniphase
system and a good immobilization of the catalyst in the
fluorous phase by tuning the fluorine atom content of the
ligands. The FBINOLs were easily recovered by the solid
phase extraction with FRP silica gel and reusable without
further purification to give almost the same chemical yield
and enantioselectivity as the first use. The solid phase extrac-
tion technique was applied successfully to a simultaneous
screening procedure. On the other hand, (R)-F BINAP was
[
4] D.P. Curran, S. Hadida, J. Am. Chem. Soc. 118 (1996) 2531–2532.
5] (a) S. Kainz, Z. Luo, D.P. Curran, W. Leitner, Synthesis (1998)
[
1
425–1427;
b) D.P. Curran, S. Hadida, M. He, J. Org. Chem. 62 (1997) 6714–
715;
(c) FluoroFlash
(
6
TM
FRP silica gel cartridges and columns are
commercially available from Fluorous Technologies Inc.
[
6] (a) D. Maillard, G. Pozzi, S. Quici, D. Sinou, Tetrahedron 58 (2002)
3
971–3976;
b) Y. Tian, Q. Chuan, T.C.W. Mak, K.S. Chan, Tetrahedron 58
2002) 3951–3961;
(c) M. Cavazzini, S. Quici, G. Pozzi, Tetrahedron 58 (2002) 3943–
949;
d) D.J. Birdsall, E.G. Hope, A.M. Stuart, W. Chen, Y. Hu, J. Xiao,
Tetrahedron Lett. 42 (2001) 8551–8553;
e) M. Cavazzini, A. Manfredi, F. Montanari, G. Pozzi, Eur. J. Org.
(
(
3
(
1
3
examined to an asymmetric Heck reaction. The preliminary
results revealed that (R)-F BINAP had good solubility in
(
1
3
Chem. (2001) 4639–4649;
(f) D. Bonafoux, Z. Hua, B. Wang, I. Ojima, J. Fluorine Chem. 112
fluorinated solvents and provided similar enantioselectivity in
the BTF homogeneous system to that of the original reaction
and higher enantiomeric excess in the benzene–FC-72 bipha-
sic system than that of the original one. However, (R)-
(
2001) 101–108;
(
g) F. Fache, O. Piva, Tetrahedron Lett. 42 (2001) 5655–5657;
(h) B. Hungerhoff, H. Sonnenschein, F. Theil, Angew. Chem. Int.
Ed. Engl. 40 (2001) 2492–2494;
F BINAP is easily oxidized by a trace amount of oxygen
1
3
(i) M. Cavazzini, G. Pozzi, S. Quici D. Maillard, D. Sinou, Chem.
Commun. (2001) 1220–1221;
in the fluorous phase during the reaction, probably because of
the strong affinity of the fluorous solvent and the tags of (R)-
F BINAP for oxygen. Therefore, preventing (R)-F BINAP
(
j) Y. Tian, K.S. Chan, Tetrahedron Lett. 41 (2000) 8813–8816;
k) M. Cavazzini, A. Manfredi, F. Montanari, S. Quici, G. Pozzi,
(
1
3
13
Chem. Commun. (2000) 2171–2172;
l) G. Pozzi, M. Cavazzini, F. Cinato, F. Montanari, S. Quici, Eur. J.
Org. Chem. (1999) 1947–1955;
m) H. Kleijn, E. Rijnberg, J.T.B.H. Jastrzebski, G. van Koten, Org.
Lett. (1999) 853–855;
n) G. Pozzi, F. Cinato, F. Montanari, S. Quici, Chem. Commun.
1998) 877–878
from oxidation throughout the reaction is the main problem to
be solved to achieve more successful use of it.
(
(
(
Acknowledgements
(
[
[
7] (a) I. Ojima (Ed.), Catalytic Asymmetric Synthesis, second ed.,
Wiley-VCH, New York, 2000;
The author would like to thank Professor Dennis P.
Curran, University of Pittsburgh, for his helpful suggestions.
This work was partially supported by Grant-in-Aid for
Scientific Research from the Ministry of Education, Science,
Sports and Culture, Japan.
(b) R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley,
New York, 1994.
8] (a) Y. Nakamura, S. Takeuchi, S. Zhang, K. Okumura, Y. Ohgo,
Tetrahedron Lett. 43 (2002) 3053–3056;
(
b) Y. Nakamura, S. Takeuchi, K. Okumura, Y. Ohgo, D.P. Curran,
Tetrahedron 58 (2002) 3963–3969;
c) Y. Nakamura, S. Takeuchi, K. Okumura, Y. Ohgo, Tetrahedron
7 (2001) 5565–5571;
d) Y. Nakamura, S. Takeuchi, Y. Ohgo, D.P. Curran, Tetrahedron 56
2000) 351–355;
(
5
References
(
(
[
1] (a) D.P. Curran, Synlett (2001) 1488–1496;
(e) Y. Nakamura, S. Takeuchi, Y. Ohgo, D.P. Curran, Tetrahedron
Lett. 41 (2000) 57–61;
(
(
(
(
b) D.P. Curran, Z. Lee, Green Chem. (2001) G3–G7;
c) T. Kitazume, J. Fluorine Chem. 105 (2000) 265–278;
d) R.H. Fish, Chem. Eur. J. 5 (1999) 1677–1680;
(f) S. Takeuchi, Y. Nakamura, Y. Ohgo, D.P. Curran, Tetrahedron
Lett. 39 (1998) 8691–8694.
e) M. Cavazzini, F. Montanari, G. Pozzi, S. Quici, J. Fluorine
[9] Q.-S. Hu, X.-F. Zhang, L. Pu, J. Org. Chem. 61 (1996) 5200–5201.
[10] A. Studer, P. Jeger, P. Wipf, D.P. Curran, J. Org. Chem. 62 (1997)
2917–2924.
Chem. 94 (1999) 183–193;
f) E. de Wolf, G. van Koten, B.-J. Deelman, Chem. Soc. Rev. 28
1999) 37–41;
(
(
[11] (a) M. Mori, T. Nakai, Tetrahedron Lett. 38 (1997) 6233–6236;
(b) F.-Y. Zhang, C.-W. Yip, R. Cao, A.S.C. Chan, Tetrahedron:
Asymmetry 8 (1997) 585–589.
(
g) I.T. Horv a´ th, Acc. Chem. Res. 31 (1998) 641–650;
(h) D.P. Curran, Angew. Chem. Int. Ed. Engl. 37 (1998) 1174–1196.