2696
M.-J. Jin et al. / Tetrahedron Letters 46 (2005) 2695–2696
R
N
References and notes
Me
CN
1. For reviews: (a) Noyori, R.; Kitamura, M. Angew. Chem.,
Int. Ed. Engl. 1991, 30, 49–69; (b) Soai, K.; Niwa, S. Chem.
Rev. 1992, 92, 833–856.
R
Ph
Et
Zn
Et
S
2. (a) Soai, K.; Yokoyama, S.; Hayasaka, T. J. Org. Chem.
1
991, 56, 4264; (b) Paleo, M. R.; Cabeza, I.; Sardina, J. J.
4
Org. Chem. 2000, 65, 2108–2113; (c) Dangel, B. D.; Polt, R.
Org. Lett. 2000, 2, 3003–3006; (d) Superchi, S.; Mecca, T.;
Giorgio, E.; Rosini, C. Tetrahedron: Asymmetry 2001, 12,
1235–1239; (e) Priego, J.; Mancheno, O. G.; Cabrera, S.;
Carretero, J. C. J. Org. Chem. 2002, 67, 1346–1353; (f)
Fontes, M.; Verdaguer, X.; Sola, L.; Pericas, M.; Riera, A.
J. Org. Chem. 2004, 69, 2532–2543.
. (a) Zhang, F.-Y.; Yip, C.-W.; Cao, R.; Chan, A. S. C.
Tetrahedron: Asymmetry 1997, 8, 585–589; (b) Heckel, A.;
Seebach, D. Angew. Chem., Int. Ed. 2000, 39, 163–
165.
. (a) Niwa, S.; Soai, K. J. Chem. Soc., Perkin Trans. 1 1991,
28, 2717–2720; (b) Conti, S.; Falorni, M.; Giacomelli, G.;
Soccolini, F. Tetrahedron 1992, 48, 8993–8999.
5. (a) Katsuji, I.; Kimula, Y.; Okamura, H.; Katsuki, T.
Synlett 1992, 573–574; (b) Qiu, J.; Guo, C.; Zhang, X. J.
Org. Chem. 1997, 62, 2665–2668; (c) Yus, M.; Ramon, D.
J.; Prieto, O. Tetrahedron: Asymmetry 2003, 14, 1103–
1104.
Table 1. Enantioselective addition of diethylzinc to aldehydes with
a
chiral aprotic ligands 2 and 3
OH
(R)
3
4
Ligand (5 mol%)
RT
RCHO + Et Zn
2
Et
R
H
b
Ligand Time (h) Yield (%) ee (%)
c
Entry
1
R
Ph
Ph
Ph
Ph
2a
2a
2a
2b
2a
2b
2a
2b
2a
2b
2a
2a
3a
3b
3
3
98
96
94
95
97
96
96
91
95
92
95
82
85
70
96
92
90
95
95
93
90
90
91
90
93
75
41
3
d
2
e
3
3
4
5
6
7
8
9
3
p-Cl-C
p-Cl-C
6
H
H
4
4
6
6
6
6
3
6
3
o-MeO-C
o-MeO-C
p-MeO-C
p-MeO-C
H
4
H
4
H
4
H
4
9
9
6. (a) Jin, M.-J.; Ahn, S.-J.; Lee, K.-S. Tetrahedron Lett. 1996,
37, 8767–8770; (b) Dieter, R. K.; Deo, N.; Lagu, B.; Dieter,
J. W. J. Org. Chem. 1992, 57, 1663–1671.
9
10
11
12
13
14
9
1
2-Naphthyl
C
6
7. For compound 2a: H NMR (CDCl
7.20 (m, 5H), 4.81 (d, J = 5.7 Hz, 1H), 3.05 (m, 1H), 2.52–
, 250 MHz) d 7.40–
3
6
H
13
6
Ph
Ph
12
18
2.34 (m, 4H), 1.40–1.06 (m, 8H), 1.08 (d, J = 6.7 Hz, 3H),
1
0.84 (t, J = 6.9 Hz, 6H); C NMR (CDCl
3
3
, 62.9 MHz) d
a
10.7, 14.0, 20.3, 30.9, 49.9, 62.0, 63.9, 128.3, 129.0, 126.3,
2
Reactions were carried out in hexane using 2.0 equiv of Et Zn unless
ꢀ1
20
1
MS (CI) m/z 305 (MH ).
31.5, 138.5; IR mSCN 2091 cm ; ½aꢂD ꢀ13.8 (c 1.0, CHCl3);
otherwise noted. Absolute configuration was assigned by the sign of
the optical rotation and elution order from a chiral OD column.
Measured as % conversion into product by GC.
+
1
For compound 2b: H NMR (CDCl
7.19 (m, 5H), 4.92 (d, J = 3.8 Hz, 1H), 2.83 (m, 1H), 2.51
b
c
3
, 250 MHz) d 7.35–
Determined by HPLC analysis (chiralcel OD column) or GC analysis
(
3H); C NMR (CDCl
m, 4H), 1.51 (m, 4H), 1.40 (m, 2H), 1.03 (d, J = 6.8 Hz,
(DEX chiral column).
Reaction in toluene.
Reaction in hexane–toluene, 1:1.
1
3
d
e
3
, 62.9 MHz) d 10.6, 24.7, 26.5, 50.6,
62.4, 67.0, 126.1, 127.7, 128.4, 132.5, 138.2; IR mSCN
ꢀ
1
20
2
(
089 cm ; ½aꢂD ꢀ42.5 (c 1.0, CHCl
3
); MS (CI) m/z 261
+
MH ).
1
4). The reaction proceeded smoothly and poor ee was
8
. Fresenius, W.; Huber, J. F. K.; Pungor, E.; Rechnitz, G. A.;
Simon, W.; West, T. S. Tables of Spectral Data for
Structure Determination of Organic Compounds; Springer:
Berlin, 1989.
9. A typical procedure for the present catalytic reaction is
described as follows: benzaldehyde (106 mg, 1.0 mmol) was
added to a solution of amino thiocyanate 2a (15 mg,
observed. Interestingly, the amino thiocyanates led to
fast reaction with high ee, whereas the amino sulfides
dramatically decrease the enantioselectivity. This fact
suggests that the enantioselectivity strongly depends on
the electronic environment around the sulfur atom. In
conclusion, we have demonstrated that new chiral apro-
tic amino thiocyanates catalyze efficiently the enantio-
selective addition of dialkylzinc to aldehydes. Our study
may open the way to the use of aprotic ligands in the
dialkylzinc–aldehyde addition.
0
1
.05 mmol) in hexane (1.6 mL) at 0 °C. Diethylzinc (2 mL,
.0 M in hexane) was then added dropwise. The mixture
was allowed to warm to room temperature. The mixture
was stirred for an additional 3 h, observing the progress of
the reaction by GC. The reaction was quenched by the
addition of dilute aqueous NH
was extracted with CH Cl . The organic extract was dried
over anhydrous MgSO4 and evaporated under reduced
pressure. The residue was purified by flash chromatography
on silica gel. The ee was determined by HPLC with a Daicel
OD-H column.
4
Cl and the resulting mixture
2
2
Acknowledgments
This work was supported by Inha University Research
grant (INHA-2005).