Chemistry - A European Journal
10.1002/chem.201802907
COMMUNICATION
Regarding the reaction mechanism, a plausible proposal is
depicted in Scheme 3. With the aid of a suitable Brønsted base,
the amide 1a can undergo SET, cleaving the N–H bond
homolytically to generate an amidyl radical. Intramolecular
addition to the pendant olefin results in the formation of a γ-
lactam bearing an alkyl radical. Alkyne 2a can intercept this
[5]
a) S. Y. Reece, J. M. Hodgkiss, J. Stubbe, D. G. Nocera, Philos. Trans.
R. Soc., B 2006, 361, 1351; b) D. R. Weinberg, C. J. Gagliardi, J. F.
Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G.
McCafferty, T. J. Meyer, Chem. Rev. 2012, 112, 4016.
[6]
a) R. Knowles, H. Yayla, Synlett 2014, 25, 2819; b) E. C. Gentry, R. R.
Knowles, Acc. Chem. Res. 2016, 49, 1546; c) D. C. Miller, K. T.
Tarantino, R. R. Knowles, Top. Curr. Chem. 2016, 374, 1; d) N.
Hoffmann, Eur. J. Org. Chem. 2017, 1982.
radical
addition/elimination mechanism extruding •SO
the •SO Ph radical can accept one electron from [Ir ],
regenerating the catalyst. The resulting phenyl sulfonyl anion
intermediate to form
product
3a
via an
2
Ph. Subsequently,
[7]
For examples of cleavage of amide N−H bonds by PCET, see: a) G. J.
Choi, R. R. Knowles, J. Am. Chem. Soc. 2015, 137, 9226; b) D. C.
Miller, G. J. Choi, H. S. Orbe, R. R. Knowles, J. Am. Chem. Soc. 2015,
137, 13492; c) Y. Moon, E. Jang, S. Choi, S. Hong, Org. Lett. 2018, 20,
II
2
+
(
2
PhSO ) is protonated by the [B-H] to yield benzene sulfinic
240; d) G. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles, Nature
acid and release the free Brønsted base (B:) that can participate
in the next catalytic cycle.
2016, 539, 268; e) J. C. K. Chu, T. Rovis, Nature 2016, 539, 272; f) D.-
F. Chen, J. C. K. Chu, T. Rovis, J. Am. Chem. Soc. 2017, 139, 14897.
For the photocatalyzed generation of amidyl radicals through N-O
cleavage, see: a) J. Davies, T. D. Svejstrup, D. Fernandez Reina, N. S.
Sheikh, D. Leonori, J. Am. Chem. Soc. 2016, 138, 8092; b) D.
Fernandez Reina, E. M. Dauncey, S. P. Morcillo, T. D. Svejstrup, M. V.
Popescu, J. Douglas, N. S. Sheikh, D. Leonori, Eur. J. Org. Chem.
[
8]
9]
In summary, an efficient method for the synthesis of alkyne
and alkene decorated lactams by employing a Brønsted base
assisted visible light photoredox catalyzed intramolecular 5-exo-
trig
cyclization/intermolecular
radical
addition/elimination
2017, 2108; c) K. Wu, Y. Du, T. Wang, Org. Lett. 2017, 19, 5669.
reaction was developed. The feasibility to retain functional
groups on the radical acceptor by introducing a sulfonyl group is
successfully proven by the products obtained. The method
developed is widely applicable, affording products in good to
high yields for a broad range of substrates, with high functional
group tolerance starting from readily available amides. This
provides the first reported access to these core structures, which
will be useful for further functionalization into valuable fine
chemicals. Further attempts of exploring such concepts are
currently ongoing in our laboratories and will be reported in due
course.
[
For the electrochemical generation of amidyl radicals, see: a) H.-C. Xu,
J. M. Campbell, K. D. Moeller, J. Org. Chem. 2014, 79, 379; b) L. Zhu,
P. Xiong, Z. Y. Mao, Y. H. Wang, X. Yan, X. Lu, H.-C. Xu, Angew.
Chem., Int. Ed. 2016, 55, 2226; c) P. Xiong, H.-H. Xu, H.-C. Xu, J. Am.
Chem. Soc. 2017, 139, 2956.
[10] For reviews on the chemistry of acetylenic sulfones, see: a) T. G. Back,
Tetrahedron 2001, 57, 5263; b) T. G. Back, K. N. Clary, D. Gao, Chem.
Rev. 2010, 110, 4498; c) J. L. Garcia Ruano, J. Aleman, A. Parra, L.
Marzo, Eur. J. Org. Chem. 2014, 1577.
[
11] For the use of sulfones in photoredox catalyzed alkenylation, allylation
and alkynylation reactions, see: for alkenylation: a) Y. Amaoka, M.
Nagatomo, M. Watanabe, K. Tao, S. Kamijo, M. Inoue, Chem. Sci.
2
014, 5, 4339; b) D. R. Heitz, K. Rizwan, G. A. Molander, J. Org. Chem.
016, 81, 7308; c) S. Paul, J. Guin, Green Chem. 2017, 19, 2530;
2
Allylation: d) S. Kamijo, K. Kamijo, K. Maruoka, T. Murafuji, Org. Lett.
016, 18, 6516; e) A. L. Fuentes de Arriba, F. Urbitsch, D. J. Dixon,
Acknowledgements
2
Chem. Commun. 2016, 52, 14434; f) L. Qi, Y. Chen, Angew. Chem. Int.
Ed. 2016, 55, 13312; g) J. Zhang, Y. Li, F. Zhang, C. Hu, Y. Chen,
Angew. Chem. Int. Ed. 2016, 55, 1872; h) W. Shu, A. Genoux, Z. Li, C.
Nevado, Angew. Chem. Int. Ed. 2017, 56, 10521; i) X. Huang, S. Luo,
O. Burghaus, R. D. Webster, K. Harms, E. Meggers, Chem. Sci. 2017,
Y. A. Ho would like to thank Deutscher Akademischer
Austauschdienst (DAAD) for
a doctoral scholarship. The
research leading to these results has received funding from the
European Research Council under the European Union's
Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement no. 617044 (SunCatChem).
8, 7126; Alkynylation: j) J. Yang, J. Zhang, L. Qi, C. Hu, Y. Chen, Chem.
Commun. 2015, 51, 5275; k) C. Gao, J. Li, J. Yu, H. Yang, H. Fu, Chem.
Commun. 2016, 52, 7292; l) H. Jiang, Y. He, Y. Cheng, S. Yu, Org. Lett.
2017, 19, 1240; Alkynylation/intramolecular cyclization: m) J. Li, H. Tian,
Keywords: photoredox catalysis • Brønsted base • lactam
derivatives • sulfonyl radical • PCET
M. Jiang, H. Yang, Y. Zhao, H. Fu, Chem. Commun. 2016, 52, 8862.
[12] Examples from our group: a) H. Yue, C. Zhu, M. Rueping, Angew.
Chem. Int. Ed 2018, 57, 1371; b) D. Fabry, Y. A. Ho, R. Zapf, W.
Tremel, M. Panthöfer, M. Rueping, T. H. Rehm, Green Chem. 2017, 19,
[
[
1]
2]
a) B. Nay, N. Riache, L. Evanno, Nat. Prod. Rep. 2009, 26, 1044; b) J.
Caruano, G. G. Muccioli, R. Robiette, Org. Biomol. Chem. 2016, 14,
1911; c) L. Fan, J. Jia, H. Hou, Q. Lefebvre, M. Rueping, Chem. Eur. J.
2016, 22, 16437; d) D. Fabry, M. Rueping, Acc. Chem. Res. 2016, 49,
1969; e) E. Fava, M. Nakajima, A. L. P. Nguyen, M. Rueping J. Org.
10134.
a) G. Martelli, M. Orena, S. Rinaldi, Curr. Org. Chem. 2014, 18, 1373;
b) G. Martelli, A. Monsignori, M. Orena, Curr. Org. Chem. 2014, 18,
Chem. 2016, 81, 6959; f) A. Millet, Q. Lefebvre, M. Rueping, Chem.
Eur. J. 2016, 22, 13464; g) E. Fava, M. Nakajima, M. B. Tabak, M.
Rueping, Green Chem. 2016, 18, 4531; h) E. Fava, A. Millet, M.
Nakajima, S. Loescher M. Rueping, Angew. Chem. Int. Ed. 2016, 55,
1
539; c) L. W. Ye, C. Shu, F. Gagosz, Org. Biomol. Chem. 2014, 12,
833; d) F. Rivas, T. Ling, Org. Prep. Proced. Int. 2016, 48, 254.
1
[
[
3]
4]
For reviews on nitrogen-centered radicals, including amidyl radicals,
see: a) S. Z. Zard, Chem. Soc. Rev. 2008, 37, 1603; b) L. Q. Nguyen, R.
R. Knowles, ACS Catal. 2016, 6, 2894; c) T. Xiong, Q. Zhang, Chem.
Soc. Rev. 2016, 45, 3069; d) J.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao,
Chem. Soc. Rev. 2016, 45, 2044
6776; i) Q. Lefebvre, N. Hoffmann, M. Rueping, Chem. Commun., 2016,
52, 2493; j) J. Zoller, D. C. Fabry, M. Rueping ACS Catal. 2015, 5,
3900; k) M. Nakajima, E. Fava, S. Loescher, Z. Jiang, M. Rueping,
Angew. Chem. Int. Ed. 2015, 54, 8828; l) D. Fabry, M. Ronge, M-.
Rueping, Chem. Eur. J. 2015, 21, 5350; m) D. C. Fabry, M. A. Ronge, J.
Zoller, M. Rueping, Angew. Chem. Int. Ed. 2015, 54, 2801; n) J. Zoller,
D. Fabry, M. Ronge, M. Rueping, Angew. Chem. Int. Ed. 2014, 53,
For reviews on the application of photoredox catalysis to the synthesis
of natural products and pharmaceutical agents, see: a) T. P. Nicholls,
D. Leonori, A. C. Bissember, Nat. Prod. Rep. 2016, 33, 1248; b) J. J.
Douglas, M. J. Sevrin, C. R. J. Stephenson, Org. Process Res. Dev.
13264; o) D. C. Fabry, J. Zoller, S. Raja, M. Rueping, Angew. Chem. Int.
Ed. 2014, 53, 10228; p) H. Hou, S. Zhu, F. Pan, M. Rueping, Org. Lett.
2016, 20, 1134.
This article is protected by copyright. All rights reserved.