Journal of the American Chemical Society
Page 4 of 5
(5) (a) Zhou, C.; Duan, X.; Liu, N. Acc. Chem. Res. 2017, 50, 2906–
NWs. Interestingly, relatively large single-crystalline do-
mains were observed in the polycrystalline Au NWs. Accord-
ing to a previous report, the predominant growth in the (111)
crystal direction is ascribed to C18AA preferring to cap the
(100) and (110) crystal facets rather than the (111) facet.13 Fur-
thermore, the presence of crystal grain boundaries provides
valuable information regarding the Au-NW growth process;
i.e., Au NWs are probably produced by the gradual fusion of
nanocrystals on the twisted nanoribbon template formed
during the early stages of reduction. This growth-process
hypothesis is also supported by the presence of Au NPs and
short Au NWs on the edges of the templates during the early
reduction period (Figure S19).
2914. (b) Sharma, J.; Chhabra, R.; Cheng, A.; Brownell, J.; Liu, Y.; Yan,
H. Science 2009, 323, 112–116. (c) Wu, X.; Xu, L.; Ma, W.; Liu, L.;
Kuang, H.; Kotov, N. A. Adv. Mater. 2016, 28, 5907–5915. (d) Shemer,
G.; Krichevski, O.; Markovich, G.; Molotsky, T.; Lubitz, I.; Kotlyar, A.
B. J. Am. Chem. Soc. 2006, 128, 11006–11007. (e) Yan, W.; Xu, L.; Xu,
C.; Ma, W.; Kuang, H.; Wang, L.; Kotov, N. A. J. Am. Chem.
Soc. 2012, 134, 15114–15121.
(6) (a) Song, C.; Blaber, M. G.; Zhao, G.; Zhang, P.; Fry, H. C;
Schatz, G. C.; Rosi, N. L. Nano Lett. 2013, 13, 3256–3261. (b) Chen, C.-
L.; Zhang, P.; Rosi, N. L. J. Am. Chem. Soc. 2008, 130, 13555–13557. (c)
Chen, C.-L.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 6902–6903. (d)
Zhang, C.; Song, C.; Fry, H. C.; Rosi, N. L. Chem.—Eur. J. 2014, 20,
941–945. (e) Merg, A. D.; Slocik, J.; Blaber, M. G.; Schatz, G. C.; Naik,
R.; Rosi, N. L. Langmuir 2015, 31, 9492–9501. (f) Merg, A. D.; Boatz, J.
C.; Mandal, A.; Zhao, G.; Mokashi-Punekar, S.; Liu, C.; Wang, X.;
Zhang, P.; van der Wel, P. C. A.; Rosi, N. L. J. Am. Chem.
Soc. 2016, 138, 13655–13663. (g) Mokashi-Punekar, S.; Merg, A. D.;
Rosi, N. L. J. Am. Chem. Soc. 2017, 139, 15043–15048.
(7) (a) Jung, S. H.; Jeon, J.; Kim, H.; Jaworski, J.; Jung, J. H. J. Am.
Chem. Soc. 2014, 136, 6446–6452. (b) Zhu, L.; Li, X.; Wu, S.; Nguyen,
K. T.; Yan, H.; Ågren, H.; Zhao, Y. J. Am. Chem. Soc. 2013, 135, 9174–
9180. (c) George, J.; Thomas, K. G. J. Am. Chem. Soc. 2010, 132, 2502–
2503. (d) Guerrero-Martínez, A.; Auguié, B.; Alonso-Gómez, J. L.;
Džolić, Z.; Gómez-Graña, S.; Žinić, M.; Cid, M. M.; Liz-Marzán, L. M.
Angew. Chem. Int. Ed. 2011, 50, 5499–5503. (e) Jin, X.; Jiang, J.; Liu,
M. ACS Nano 2016, 10, 11179–11186.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In summary, we introduced a wet chemical method for the
synthesis of chirality-controlled double-helical Au NWs us-
ing twisted nanoribbon templates of HSA, which serves as
the source of chirality, and C18AA, which acts as the Au cap-
ping agent. We demonstrated that the introduction of two
compounds that individually perform different functions into
the template is a highly effective method for the preparation
of chiral Au nano-objects using wet chemistry. We believe
that this bi-functional strategy can be applied to the synthe-
sis of other shape-controlled metallic nano-objects.
(8) (a) Cheng, J.; Saux, G. L.; Gao, J.; Buffeteau, T.; Battie, Y.;
Barois, P.; Ponsinet, V.; Delville, M.; Ersen, O.; Pouget, E.; Oda,
R. ACS Nano 2017, 11, 3806–3818. (b) Tamoto, R.; Lecomte, S.; Si, S.;
Moldovan, S.; Ersen, O.; Delville, M.-H.; Oda, R. J. Phys. Chem.
C 2012, 116, 23143–23152. (c) Qi, H.; Shopsowitz, K. E.; Hamad, W. Y.;
MacLachlan, M. J. J. Am. Chem. Soc. 2011, 133, 3728–3731.
(9) (a)Xie, J.; Duan, Y.; Che, S. Adv. Funct. Mater. 2012, 22, 3784–
3792. (b) Xie, J.; Che, S. Chem.—Eur. J. 2012, 18, 15954–15959.
(10) (a) Maoz, B. M.; van der Weegen, R.; Fan, Z.; Govorov, A. O.;
Ellestad, G.; Berova, N.; Meijer, E. W.; Markovich, G. J. Am. Chem.
Soc. 2012, 134, 17807–17813. (b) Ben-Moshe, A.; Wolf, S. G.; Sadan, M.
B.; Houben, L.; Fan, Z.; Govorov, A. O.; Markovich, G. Nat. Com-
mun. 2014, 5, 4302.
(11) Tachibana, T.; Kambara, H. J. Am. Chem. Soc. 1965, 87, 3015–
3016.
(12) (a) Mallia, V. A.; Weiss, R. G. J. Phys. Org. Chem. 2014, 27, 310–
315. (b) Murakami, S.; Satou, K.; Kijima, T.; Watanabe, M.; Izumi,
T. Eur. J. Lipid Sci. Technol. 2011, 113, 450–458.
(13) (a) Morita, C.; Tanuma, H.; Kawai, C.; Ito, Y.; Imura, Y.; Kawai,
T. Langmuir 2013, 29, 1669–1675. (b) Imura, Y.; Maezawa, A.; Morita,
C.; Kawai, T. Langmuir 2012, 28, 14998–154004. (c) Imura, Y.; Morita,
C.; Endo, H.; Kondo, T.; Kawai, T. Chem. Commun. 2010, 46, 578–579.
(14) Imura, Y.; Tsujimoto, K.; Morita, C.; Kawai,
T. Langmuir 2014, 30, 5026–5030.
ASSOCIATED CONTENT
Supporting Information
Experimental details and Supplementary Figures S1–S19. This
material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
*E-mail: kawai@ci.kagu.tus.ac.jp
Notes
The authors declare no competing financial interests.
REFERENCES
(1) (a) Liu, M; Zhang, L; Wang, T. Chem. Rev. 2015, 115, 7304–7397.
(b) Zhang, M; Qing, G; Sun, T. Chem. Soc. Rev. 2012, 41, 1972–1984.
(2) Soukoulis, C. M.; Wegener, M. Nat. Photonics 2011, 5, 523–530.
(3) (a) Pendry, J. B. Science 2004, 306, 1353–1355. (b) Zhang, S.;
Park, Y.-S.; Li, J.; Lu, X.; Zhang, W.; Zhang, X. Phys. Rev. Lett.
2009, 102, 023901.
(15) Tachibana, T.; Mori, T.; Hori, K. Nature 1979, 278, 13–19.
(4) (a) Mark, A. G.; Gibbs, J. G.; Lee, T.-C.; Fischer, P. Nat. Ma-
ter. 2013, 12, 802–807. (b) Gibbs, J. G.; Mark, A. G.; Lee, T.-C.; Eslami,
S.; Schamel, D.; Fischer, P. Nanoscale 2014, 6, 9457–9466. (c) Frank,
B.; Yin, X.; Schäferling, M.; Zhao, J.; Hein, S. M.; Braun, P. V.; Giessen,
H. ACS Nano 2013, 7, 6321–6329. (d) Yeom, B.; Zhang, H.; Zhang, H.;
Park, J. I.; Kim, K.; Govorov, A. O.; Kotov, N. A. Nano Lett. 2013, 13,
5277–5283. (e) Esposito, M.; Tasco, V.; Todisco, F.; Cuscunà, M.;
Benedetti, A.; Sanvitto, D.; Passaseo, A. Nat. Commun. 2015, 6, 6484.
(f) Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.;
von Freymann, G.; Linden, S.; Wegener, M. Science 2009, 325, 1513–
1515. (g) Helgert, C.; Pshenay-Severin, E.; Falkner, M.; Menzel, C.;
Rockstuhl, C.; Kley, E.-B.; Tünnermann, A.; Lederer, F.; Pertsch, T.
Nano Lett. 2011, 11, 4400–4404. (h) Hentschel, M.; Schäferling, M.;
Weiss, T.; Liu, N.; Giessen, H. Nano Lett. 2012, 12, 2542–2547. (i) Kim,
Y.; Yeom, B.; Arteaga, O.; Yoo, S. J.; Lee, S.-G.; Kim, J.-G.; Kotov, N.
A. Nat. Mater. 2016, 15, 461–468. (j) Toyoda, K.; Miyamoto, K.; Aoki,
N.; Morita, R.; Omatsu, T. Nano Lett. 2012, 12, 3645–3649. (k) Lv, J.;
Hou, K.; Ding, D.; Wang, D.; Han, B.; Gao, X.; Zhao, M.; Shi, L.; Guo,
J.; Zheng, Y.; Zhang, X.; Lu, C.; Huang, L.; Huang, W.; Tang, Z. An-
gew. Chem. Int. Ed. 2017, 56, 5055–5060.
ACS Paragon Plus Environment