44
Y. Leng et al. / Catalysis Communications 25 (2012) 41–44
Poly(VMPS)-PW
MimPS-PW
Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.catcom.2012.04.014.
100
80
60
40
20
0
Acknowledgements
The authors thank the financial support from the National Natural
Science Foundation of China (No. 21136005) and the Fundamental
Research Funds for the Central Universities (No. JUSRP111A04).
References
[1] P. Maki-Arvela, T. Salmi, M. Sundell, K. Ekman, R. Peltonen, J. Lehtonen, Applied
Catalysis A: General 184 (1999) 25.
[2] A. Heidekum, M.A. Harmer, W.F. Hoelderich, Journal of Catalysis 181 (1999) 217.
[3] I.J. Dijs, H.L.F. van Ochten, C.A. van Walree, J.W. Geus, L.W. Jenneskens, Journal of
Molecular Catalysis A: Chemical 188 (2002) 209.
[4] R.A. Sheldon, R.S. Downing, Applied Catalysis A: General 189 (1999) 163.
[5] G. Pasquale, P. Vázquez, G. Romanelli, G. Baronetti, Catalysis Communications 18
(2012) 115.
1
2
3
4
5
6
Catalyst recylce times
Fig. 3. Catalytic reusability of Poly(VMPS)-PW and MimPS-PW for the esterification of
acetic acid with n-butanol.
[6] D. Chaturvedi, Current Organic Chemistry 15 (2011) 1236.
[7] J.P. Hallett, T. Welton, Chemical Reviews 111 (2011) 3508.
[8] A.C. Cole, J.L. Jensen, I. Ntai, K.L.T. Tran, K.J. Weaver, D.C. Forbes, J.H. Davis Jr., Jour-
nal of the American Chemical Society 124 (2002) 5962.
[9] C.E. Song, D. Jung, S.Y. Choung, E.J. Roh, S. Lee, Angewandte Chemie, International
Edition 43 (2004) 6183.
[10] E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis Jr., Journal of the American Chemical So-
ciety 124 (2002) 926.
[11] X. Liu, H. Ma, Y. Wu, C. Wang, M. Yang, P. Yan, U. Welz-Biermann, Green Chemis-
try 13 (2011) 697.
[12] H. Zhi, C. Lu, Q. Zhang, J. Luo, Chemical Communications (2009) 2878.
[13] H. Zhang, F. Xu, X. Zhou, G. Zhang, C. Wang, Green Chemistry 9 (2007) 1208.
[14] P.G. Rickert, M.R. Antonio, M.A. Firestone, K.A. Kubatko, T. Szreder, J.F. Wishart,
M.L. Dietz, Dalton Transactions (2007) 529.
[15] K. Qiao, H. Hagiwara, C. Yokoyama, Journal of Molecular Catalysis A: Chemical 246
(2006) 65.
[16] L. Gharnati, O. Walter, U. Arnold, M. Döring, European Journal of Inorganic Chem-
istry (2011) 2756.
[17] H. Li, Y. Qiao, L. Hua, Z. Hou, B. Feng, Z. Pan, Y. Hu, X. Wang, X. Zhao, Y. Yu,
ChemCatChem 2 (2010) 1165.
can be applied to a variety of esterification reactions with different
substrates.
The recycling performance of Poly(VMPS)-PW and MimPS-PW in
the esterification of acetic acid with n-butanol were compared in Fig. 3
under similar reaction conditions. For MimPS-PW, the yield 94.5% for
the first run decreased down to 85.2% for the sixth run, mostly due to
the unavoidable leaching of the catalyst during the reaction [20]. Inter-
estingly, Poly(VMPS)-PW could be reused at least six times without a
significant decrease in conversion with a high catalyst recovery rate
about 94 wt.% after six runs, demonstrating a steady reusability. Further-
more, the IR spectrum for the recovered Poly(VMPS)-PW (Fig. S4, SM)
was well consistent with that of the fresh one, revealing a durable struc-
ture of the catalyst. This comparison allows to draw that the polymeric
cation-pairing HPA catalyst is more structural stable, with a great im-
provement of the leaching-resistance property.
[18] Y. Qiao, Z. Hou, H. Li, Y. Hu, B. Feng, X. Wang, L. Hua, Q. Huang, Green Chemistry
11 (2009) 1955.
[19] Y. Leng, J. Wang, D. Zhu, X. Ren, H. Ge, L. Shen, Angewandte Chemie, International
Edition 48 (2009) 168.
4. Conclusions
[20] Y. Leng, J. Wang, D. Zhu, Y. Wu, P. Zhao, Journal of Molecular Catalysis A: Chemical
313 (2009) 1.
[21] W. Zhang, Y. Leng, D. Zhu, Y. Wu, J. Wang, Catalysis Communications 11 (2009)
151.
[22] J. Yuan, M. Antonietti, Polymer 52 (2011) 1469.
[23] Z. Xu, H. Wan, J. Miao, M. Han, C. Yang, G. Guan, Journal of Molecular Catalysis A:
Chemical 332 (2010) 152.
[24] X. Mu, J. Meng, Z. Li, Y. Kou, Journal of the American Chemical Society 127 (2005)
9694.
In summary, we prepared a new SO3H-functionalized HPA-based
polymeric hybrid by pairing SO3H-functionalized polymeric IL-cations
with heteropolyanions. The obtained polymeric hybrid was revealed
to be a highly efficient solid catalyst for various esterification reactions,
presenting the advantages of easy recovery and steady reuse. The acidic
SO3H functional groups in the hybrid catalyst account for the excellent
catalytic activity, while both the polymeric framework of IL-cation and
the large heteropolyanion are responsible for the catalyst's solid nature
and insolubility.
[25] H. Mori, M. Yahagi, T. Endo, Macromolecules 42 (2009) 8082.
[26] M. Misono, Chemical Communications (2001) 1141.