Notes and references
1 (a) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457;
(b) A. W. Cabri and I. Candiani, Acc. Chem. Res., 1995, 28, 2;
(c) V. K. Kanuru, G. Kyriakou, S. K. Beaumount, A. C.
Papageorgiou, D. J. Watson and R. M. Lambert, J. Am. Chem.
Soc., 2010, 132, 8081.
2 (a) G. B. Smith, G. C. Dezeny, D. L. Hughes, A. O. King and
T. R. Verhoeven, J. Org. Chem., 1994, 59, 8151; (b) G. C. Fu and
A. F. Littke, Angew. Chem., Int. Ed., 2002, 41, 4176; (c) J. Hasssan,
V. Penalva, L. Lavebot, C. Gozzi and M. Lamaire, Tetrahedron, 1998,
54, 13793; (d) S.-Y. Xu, Y.-B. Ruan, X.-X. Luo, Y.-F. Gao, J.-S. Zhao,
J.-S. Shen and Y.-B. Jiang, Chem. Commun., 2010, 46, 5864.
3 (a) A. S. K. Hashimi, L. Ding, J. W. Bats, P. Fisher and W. Frey,
Chem.–Eur. J., 2003, 9, 4339; (b) G. Dyker, Angew. Chem., Int. Ed.,
2000, 39, 4237; (c) B. Karimi and F. K. Esfahani, Chem. Commun.,
2011, 47, 10452; (d) A. Prastaro, P. Ceci, E. Chiancone, A. Boffi,
G. Fabrizi and S. Cacchi, Tetrahedron Lett., 2010, 51, 2550.
4 (a) N. Ren, Y. H. Yang, Y. H. Zhang, Q. R. Wang and Y. Tang,
J. Catal., 2007, 246, 215; (b) L. Yin and J. Liebscher, Chem. Rev.,
2007, 107, 133; (c) A. Corma, C. Gonzalez-Arellano, M. Lglesias,
S. Perez-Ferreras and F. Sanchez, Synlett, 2007, 1771;
(d) Y. Yamamoto, R. Suzuki, K. Hattori and H. Nishiyama,
Synlett, 2006, 1027.
Scheme 1 The proposed new mechanism for aerobic homocoupling
of phenylboronic acid over a Au/MAO catalyst.
follows (Scheme 1): (1) the phenylboronic acids should interact
with the surface hydroxyl groups of MAO to form boric acid
and phenyl species on Au nanoparticles with negative charge
(Aun2À, Au4f XPS in Fig. 2b); (2) the phenyl species on the
Au nanoparticles interact with each other to form a biphenyl
product, where the homocoupling occurs. However, if the phenyl
species on the Au nanoparticles interact with hydroxyl groups, a
by-product of phenol would be formed (Scheme S2, ESIw); (3) the
negatively charged Au nanoparticles (Aun2À) formed in step 1
could be oxidized by molecular oxygen in the presence of H2O,
forming the active Au nanoparticles (Fig. 2c, Aun) and hydroxyls
(OHÀ). It is mentioned that this mechanism based on the
Au/MAO catalyst with only metallic Au0 is quite different
from that involving cationic gold, which was proposed for a
Au/CeO2 catalyst, a system containing cationic Au3+ and
Au+ sites, where the reduced Au+ ions could be oxidized by
H+, forming H2.5 When the Aun2À species return to the active
Aun, the catalytic reaction is recyclable, and the overall
homocoupling reaction could be described as follows:
5 S. Carrettin, J. Guzman and A. Corma, Angew. Chem., Int. Ed.,
2005, 44, 2242.
6 (a) C. Gonzalez-Arellano, A. Corma, M. Lglesias and F. Sanchez,
Chem. Commun., 2005, 1990; (b) S. Carrettin, A. Corma,
M. Lglesias and F. Sanchez, Appl. Catal., A, 2005, 291, 247;
(c) C. Gonzalez-Arellano, A. Corma, M. Lglesias and
F. Sanchez, J. Catal., 2006, 238, 497; (d) G. Cheng and M. Luo,
Eur. J. Org. Chem., 2011, 2519.
7 A. Primo and F. Quignard, Chem. Commun., 2010, 46, 5593.
8 H. Tsunoyama, H. Sakurai, N. Ichikuni, Y. Negishi and
T. Tsukuda, Langmuir, 2004, 20, 11293.
9 (a) G. J. Hutchings, J. Catal., 1985, 96, 292; (b) N. Dimitratos,
A. Villa, D. Wang, F. Porta, D. S. Su and L. Prati, J. Catal., 2006,
244, 113.
10 (a) G. J. Hutchings, Catal. Today, 2007, 122, 196;
(b) A. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon and
G. J. Hutchings, Science, 2008, 321, 1331; (c) T. V. Choudhary and
D. W. Goodman, Top. Catal., 2002, 21, 25.
11 (a) C. Y. Ma, Z. Mu, J. J. Li, Y. G. Jin, J. Cheng, G. Q. Lu,
Z. P. Hao and S. Z. Qiao, J. Am. Chem. Soc., 2010, 132, 2608;
(b) C. Y. Ma, B. J. Dou, J. J. Li, J. Cheng, Q. Hu, Z. P. Hao and
S. Z. Qiao, Appl. Catal., B, 2009, 92, 202; (c) A. Primo, T. Marino,
A. Corma, R. Molinary and H. Garcia, J. Am. Chem. Soc., 2011,
133, 6930.
12 (a) J. C. F. Gonzalez and B. C. Gates, Chem. Soc. Rev., 2008,
37, 2127; (b) W. Yan, S. Brown, Z. Pan, S. M. Mahurin,
S. H. Overbury and S. Dai, Angew. Chem., Int. Ed., 2006,
45, 3614; (c) W. Yan, S. M. Mahurin, Z. Pan, S. H. Overbury
and S. Dai, J. Am. Chem. Soc., 2005, 127, 10480; (d) L. Wang,
J. Zhang, X. Meng, D. Zheng and F.-S. Xiao, Catal. Today, 2011,
175, 404.
13 (a) D. He, H. Shi, Y. Wu and B.-Q. Xu, Green Chem., 2007, 9, 849;
(b) X. Zhang, H. Shi and B.-Q. Xu, Angew. Chem., Int. Ed., 2005,
44, 7132; (c) H. Sun, F. Su, J. Ni, Y. Cao, H. He and K. Fan,
Angew. Chem., Int. Ed., 2009, 48, 4390; (d) T. Wang, H. Shou,
Y. Kou and H. Liu, Green Chem., 2009, 11, 562.
14 (a) H. Sakurai, H. Tsunoyama and T. Tsukuda, J. Organomet.
Chem., 2007, 692, 368; (b) H. Tsunoyama, N. Ichikuni, H. Sakuria
and T. Tsukuda, J. Am. Chem. Soc., 2009, 131, 7086;
(c) T. Tsukuda, H. Tsunoyama and H. Sakurai, Chem.–Asian J.,
2011, 6, 736.
15 (a) L. Wang, X. Meng, B. Wang, W. Chi and F.-S. Xiao, Chem.
Commun., 2010, 46, 5003; (b) B. K. Min and C. M. Friend, Chem.
Rev., 2007, 107, 2709.
16 (a) L. Wang, H. Wang, P. Hapala, L. Zhu, L. Ren, X. Meng,
J. P. Lewis and F.-S. Xiao, J. Catal., 2011, 281, 30; (b) Y.-F. Han,
Z. Zhong, K. Ramesh, F. Chen and L. Chen, J. Phys. Chem. C,
2007, 111, 3163.
17 M. Boronat and A. Corma, J. Catal., 2011, 284, 138.
18 The H2O molecules were mainly from the solvents (higher than
4 mmol mLÀ1 of H2O) without any anhydrous treatment.
2Ph–B(OH)2 + H2O + 1/2O2 - Ph–Ph + 2B(OH)3
Furthermore, Au nanoparticles formed on SiO2, Al2O3 and
TiO2 with similar Au loadings were prepared, but they show
much lower conversions of phenylboronic acid (2.5–15.8%,
Table 1, entries 9–11) than Au/MAO, which possibly are due
to the difference in Au particle sizes and hydroxyl groups. These
works are currently under investigation. Moreover, various
substituted phenylboronic acids were employed in the homo-
coupling over Au/MAO. As shown in Table S1 (ESIw), the
catalyst worked well with different substrates, giving the desired
coupling products with high conversion (83.7–99.5%).
In summary, we prepared Au nanoparticles on MAO, which
shows high activities and excellent recyclability in aerobic
coupling of phenylboronic acid under base-free conditions.
Catalytic tests and XPS characterizations show that molecular
oxygen, hydroxyls on MAO, and H2O in a reaction system
play important roles in this reaction, therefore a possible
mechanism is proposed. Considering the importance of hetero-
geneous nanosized Au catalysts and homocouplings, it is
expected that this work could have great potential for the
production of pharmaceutical and fine chemicals that need
further exploration.
This work is supported by the National Natural Science
Foundation of China (20973079 and U1162201) and State
Basic Research Project of China (2009CB623501).
c
5478 Chem. Commun., 2012, 48, 5476–5478
This journal is The Royal Society of Chemistry 2012