Please do not adjust margins
Dalton Transactions
Page 6 of 8
ARTICLE
Journal Name
sixth run shown in Fig. 4b confirms the aggregation of Pt NPs
with an average diameter of 2.7 nm on the Ti3C2Tx surface. The
slight increase in average size of Pt NPs led to the loss of surface-
active sites and thus generation of more p-CNSB intermediate,
thereby slight reducing the selectivity of p-CAN for the selective
hydrogenation of p-CNB. Additionally, the good stability of the
catalyst should be ascribed to the structure stability of the
Ti3C2Tx-D support. The Pt/Ti3C2Tx-D-AB catalyst after reusability
tests was collected and characterized through XRD to check the
structure changes. No obvious structure changes were detected
in the XRD pattern of the reused Pt/Ti3C2Tx-D-AB catalyst,
demonstrating the excellent stability of the matrix during the
reusability tests for p-CNB hydrogenation (Fig. S4). Further work
should be done to improve the reusability of the present
catalyst.
Acknowledgements
We acknowledge the financial supporDtsOIf:r1o0m.103t9h/De0DNTa0t2io59n4aAl
Natural Science Foundation of China (21777109).
References
1. C. Antonetti, M. Oubenali, A. M. Raspolli Galletti, P. Serp and G.
Vannucci, Appl. Catal., A 2012, 421-422, 99-107.
2. D. Zhu, L. Long, J. Sun, H. Wan and S. Zheng, Appl. Surf. Sci.,
2020, 504, 144329.
3. H. Chen, D. He, Q. He, P. Jiang, G. Zhou and W. Fu, RSC Adv.,
2017, 7, 29143-29148.
4. M. Králik, D. Gašparovičová, M. Turáková, Z. Vallušová, J. Balko,
P. Major, M. Kučera, P. Puliš and O. Milkovič, Chem. Pap., 2019,
73, 397-414.
5. D. Zhu, X. Weng, Y. Tang, J. Sun, S. Zheng and Z. Xu, RSC Adv.,
2020, 10, 14208-14216.
6. R. Ding, Q. Chen, Q. Luo, L. Zhou, Y. Wang, Y. Zhang and G. Fan,
Green Chem., 2020, 22, 835-842.
7. M. Ming, Y. Zhang, C. He, L. Zhao, S. Niu, G. Fan and J.-S. Hu,
Small, 2019, 15, 1903057.
8. M. Roca-Ayats, G. García, M. A. Peña and M. V. Martínez-Huerta,
J. Mater. Chem. A, 2014, 2, 18786-18790.
9. Y. Li, M. Li, J. Lu, B. Ma, Z. Wang, L.-Z. Cheong, K. Luo, X. Zha, K.
Chen, P. O. Å. Persson, L. Hultman, P. Eklund, C. Shen, Q. Wang,
J. Xue, S. Du, Z. Huang, Z. Chai and Q. Huang, ACS Nano, 2019,
13, 9198-9205.
Fig. 4 (a) The reusability of Pt/Ti3C2Tx-D-AB. (b) The TEM image after the sixth run
(inset: the size distribution of Pt NPs).
10. X. Li, G. Fan and C. Zeng, Int. J. Hydrogen Energy 2014, 39,
14927-14934.
11. J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong, R.-S. Liu, C.-P. Han,
Y. Li, Y. Gogotsi and G. Wang, Nat. Catal., 2018, 1, 985-992.
12. D. Zhao, Z. Chen, W. Yang, S. Liu, X. Zhang, Y. Yu, W.-C. Cheong,
L. Zheng, F. Ren, G. Ying, X. Cao, D. Wang, Q. Peng, G. Wang and
C. Chen, J. Am. Chem. Soc., 2019, 141, 4086-4093.
13. J. Polte, CrystEngComm, 2015, 17, 6809-6830.
14. C. Daruich De Souza, B. Ribeiro Nogueira and M. E. C. M.
Rostelato, J. Alloys Compd., 2019, 798, 714-740.
15. G. Fan, X. Li, Y. Ma, Y. Zhang, J. Wu, B. Xu, T. Sun, D. Gao and J.
Bi, New J. Chem., 2017, 41, 2793-2799.
16. J. Liu, Y. Liu, D. Xu, Y. Zhu, W. Peng, Y. Li, F. Zhang and X. Fan,
Appl. Catal., B 2019, 241, 89-94.
17. M. Ming, Y. Ren, M. Hu, Y. Zhang, T. Sun, Y. Ma, X. Li, W. Jiang,
D. Gao, J. Bi and G. Fan, Appl. Catal., B 2017, 210, 462-469.
18. Y. Wang, X. Rong, T. Wang, S. Wu, Z. Rong, Y. Wang and J. Qu,
J. Catal., 2019, 377, 524-533.
Conclusions
In summary, we have developed a method to prepare Pt NPs
anchored on the Ti3C2Tx-D surface using ammonia borane as the
reducing agent. Note that the reductants affected the particle
size and dispersity of Pt NPs, which directly decided the catalytic
activity of Pt/Ti3C2Tx-D. The p-CNB conversion and p-CAN
selectivity over Pt/Ti3C2Tx-D-AB obtained by using ammonia
borane as reductant both reached above 99.5% within 1 h at 30
℃ and 1 MPa of H2 in the presence of ethanol/water mixture
with a volume percent of 28%. The Pt NPs with a high metal
dispersion, the existence of electron-efficient Pt(0) species, and
the synergistic catalysis between Pt/Ti3C2Tx-D-AB and water
make Pt/Ti3C2Tx-D-AB as a high performance catalyst for the
selective hydrogenation of p-CNB to p-CAN. Moreover, the
Pt/Ti3C2Tx-D-AB is a versatile catalyst which can be utilized to
produce a series of aromatic amines with conversion of 99.9%
19. X. Zhang, J. Zhang, H. Cao and Y. Li, Appl. Catal., A 2019, 585,
117181.
and selectivity of 94% within 1 to 3 hours. More importantly, 20. C. J. Zhang, S. Pinilla, N. McEvoy, C. P. Cullen, B. Anasori, E. Long,
S.-H. Park, A. Seral-Ascaso, A. Shmeliov, D. Krishnan, C. Morant,
X. Liu, G. S. Duesberg, Y. Gogotsi and V. Nicolosi, Chem. Mater.,
2017, 29, 4848-4856.
the p-CNB conversion kept above 98.0% and the p-CAN
selectivity remained above 92.0% after six times recycling. This
result indicates that ammonia borane has great potential to
produce desired metal nanocatalysts for heterogeneous
catalysis.
21. X. Zhang, B. Shao, Z. Sun, Z. Gao, Y. Qin, C. Zhang, F. Cui and X.
Yang, Ind. Eng. Chem. Res., 2020, 59, 1822-1828.
22. J. Zhao, L. Zhang, X.-Y. Xie, X. Li, Y. Ma, Q. Liu, W.-H. Fang, X. Shi,
G. Cui and X. Sun, J. Mater. Chem. A, 2018, 6, 24031-24035.
23. J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen
and M. W. Barsoum, Appl. Surf. Sci., 2016, 362, 406-417.
24. J. Halim, K. M. Cook, P. Eklund, J. Rosen and M. W. Barsoum,
Appl. Surf. Sci., 2019, 494, 1138-1147.
Conflicts of interest
There are no conflicts to declare.
25. S. Min, Y. Xue, F. Wang, Z. Zhang and H. Zhu, Chem. Commun.,
2019, 55, 10631-10634.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins