C O MMU N I C A T I O N S
Table 2. Catalytic Activities in Oxidation Reactions by H2O2 over
MTS-9, Ti-MCM-41, and TS-1 Samples
Because of the strong acidic condition in the second step, the
nanoclusters prepared in the first step would not grow continuously
into large crystals, and thus the appearance of TiO2 as a separate
phase is avoided. Generally, a TiO2 phase, which is easily formed
under the basic conditions used in the preparation of porous
titanosilicates such as TS-1 and Ti-MCM-41, often acts as a catalyst
poison in oxidation reactions.25
product selectivity
(%)
conv.
samples
MTS-9
reactions
TOF (%)
P1
P2
P3
0.7
1.9
0.5
1.0
phenol hydroxylationc
6.8 26.3 59.5 39.8
0.5 2.5 60.1 38.0
0.1 0.5 58.5 41.5
5.5 28.0 50.4 48.6
Ti-MCM-41 phenol hydroxylationc
Ti-HMSa
phenol hydroxylationc
phenol hydroxylationc
styrene epoxidationd
TS-1∧
Acknowledgment. ThisworkwassupportedbyNSFC(29825108,
29733070, and 20173022), the State Basic Research Project
(G2000077507). We thank Prof. Dezeng Wang (Department of
Chemical Engineering, Tsinghua University, China) for helpful
suggestions and discussions.
MTS-9
9.4 56.4 28.0 29.3 42.7
6.1 48.3 100
5.2 54.6 13.3 58.3 29.0
trimethylphenol hydroxylatione 7.4 18.8 66.7 21.1 12.2
Ti-MCM-41 styrene epoxidationd
TS-1b
styrene epoxidationd
MTS-9
Ti-MCM-41 trimethylphenol hydroxylationd 1.4 4.1 25.5 69.8
4.6
5.0
Ti-HMSa
TS-1b
trimethylphenol hydroxylatione 0.5 2.0 25.0 70.0
trimethylphenol hydroxylatione 0.3 1.2 71.1 17.6 11.3
Supporting Information Available: Figures S1-S5 (PDF). This
a Ti-HMS with Si/Ti ratio of 30 was synthesized according to published
procedure.9 b TS-1 with Si/Ti ratio of 30 was synthesized according to
published procedure.1 c Reaction conditions: water as a solvent, reaction
temperature at 80 °C, phenol/H2O2 ) 3/1 (molar ratio), reaction time for 4
h, catalyst/phenol ) 5% (weight ratio). The products are catechol (P1),
hydroquinone (P2), and benzoquinone (P3). The product of tar is not
included. d Reaction conditions: acetone as a solvent, reaction temperature
at 45 °C, styrene/ H2O2 ) 3/1 (molar ratio), reaction time for 5 h, catalyst/
phenol ) 5% (weight ratio). The products are styrene epoxide (P1),
phenylacetaldehyde (P2), and benzaldehyde (P3). e Reaction conditions:
acetonitrile as a solvent, reaction temperature at 80 °C, trimethylphenol/
H2O2 ) 3/1 (molar ratio), reaction time for 4 h, catalyst/phenol ) 5%
(weight ratio). The product are trimethylhydroquinone (P1), trimethylben-
zoquinone (P2), others (P3).
References
(1) Taramasso, M.; Perego, G.; Notari, B. U.S. Patent 4,410,501, 1983.
(2) Tuel, Z. Zeolites 1995, 15, 236-242.
(3) (a) Serrano, D. P.; Li, H. X.; Davis, M. E. Chem. Commun. 1992, 745-
747. (b) Reddy, K. M. et al., Catal. Lett. 1994, 23, 175-187.
(4) (a) Camblor, M. A.; Corma, A.; Perez-Pariente, J. Zeolite 1993, 13, 82-
87. (b) Camblor, M. A.; Constantini, A.; Corma, A.; Gilbert, L.; Esteve,
P.; Martinez, A.; Valencia, S. Chem. Commun. 1996, 1339-1440. (c)
Blasco, T.; Camblor, M. A.; Corma, A.; Perez-Pariente, J. J. Am. Chem.
Soc. 1993, 115, 11806-11813. (d) Corma, A.; Esteve, P.; Martinez, A.;
Valencia, S. J. Catal. 1995, 152, 18-24.
(5) (a) Huybrechts, D. R. C.; De Bruycker, L.; Jabobs, P. A. Nature 1990,
345, 240-242. (b) Selvam, T.; Ramaswamy, A. V. Chem. Commun. 1996,
1215-1216.
(6) (a) Notari, B. Structure-ActiVity and SelectiVity Relationship in Hetero-
geneous Catalysis; Grasselli, R. K., Sleight, A. W., Eds.; Elsevier:
Amsterdam, 1991; pp 243-256. (b) Notari, B. Catal. Today 1993, 18,
163-172.
the coordination environment of the Ti species in MTS-9 is similar
to that in TS-1.18 In contrast, Ti-MCM-41 shows peak at 230 nm,
which had been assigned to titanium with a coordination number
between four and six.12,18 UV-Raman spectroscopy is very sensitive
to the coordination environment of Ti species,23 and its spectrum
of MTS-9 shows a band at 1122 cm-1 (Figure 3S), which is very
close to that of TS-1 (1125 cm-1) and characteristic of isolated
four-coordinated Ti species.23
We attribute the good hydrothermal stability of MTS-9 in part
to the zeolite-like connectivity of TO4 (T ) Si, Ti) in the
mesostructure as discussed in previous work20,21 and in part to its
thicker walls.22 The high catalytic activity of MTS-9 is due to the
TS-1-like enviroment of the Ti in MTS-9. The evidence for this is
provided by IR spectroscopy of MTS-9. It gives a band at 556 cm-1
(Figure 4S) which is characteristic of a five-ring subunit in TS-1
zeolite.1 In contrast, we cannot detect this band with Ti-MCM-41.
Additionally, from the high-magnification TEM image (Figure 5S)
we observed some area in the walls of MTS-9 with ordered
micropores array. Similar phenomena have never been found in
previous work on mesoporous materials. The FFT diffractogram
of these areas further confirms the periodical array of these
micropores. We notice the size of these areas is about 3 nm, which
is well consistent with that of MFI nanoclusters (2.8 nm) reported
by de Moor.24 We think they are a visual indication of preformed
TS-1 nanoclusters embedded in the walls of MTS-9.
(7) Roberts, M. A.; Sankar, G.; Thomas, J. M.; Jones, R. H.; Du, H.; Chen,
J.; Pang, W.; Xu, R. Nature 1996, 381, 401-404.
(8) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S.
Nature 1992, 352, 710-712.
(9) (a) Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J. Nature 1994, 368, 321-
323. (b) Zhang, W.; Wang, J.; Tanev, P. T.; Pinnavia, T. J. Chem.
Commun. 1996, 979-980. (c) Zhang, W.; Froba, M.; Wang, J.; Tanev,
P. T.; Wong, J.; Pinnavia, T. J. J. Am. Chem. Soc. 1996, 118, 9164.
(10) Inagaki, S.; Fukushima, Y.; Kuroda, K. Chem. Commun. 1993, 680.
(11) Koyano, K. A.; Tatsumi, T. Chem. Commun. 1996, 145-146.
(12) Corma, A.; Navarro, M. T.; Perez-Pariente, J. Chem. Commun. 1994, 147-
148.
(13) Blasco, T.; Corma, A.; Navarro, M. T.; Perez-Pariente, J. J. Catal. 1995,
156, 65-74.
(14) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka,
B. F.; Stucky, G. D. Science 1998, 279, 548.
(15) Bharat, L. N.; Johnson, O.; Sridhar, K. Chem. Mater. 2001, 13, 552.
(16) (a) Morey, M. S.; O’Brien, S.; Schwarz, S.; Stucky, G. D. Chem. Mater.
2000, 12, 898. (b) Luan, Z.; Bae, J. Y.; Kevan, L. Chem. Mater. 2000,
12, 3202.
(17) Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J. M. Nature 1995, 378,
159-162.
(18) Corma, A. Chem. ReV. 1997, 97, 2373.
(19) Maclachlan, M. J.; Coombs, N.; Ozin, G. A. Nature 1999, 397, 681.
(20) (a) Liu, Y.; Zhang, W. Z.; Pinnavaia, T. J. J. Am. Chem. Soc. 2000, 122,
8791. (b) Angew. Chem., Int. Ed. 2001, 40, 1255.
(21) (a) Zhang, Z.; Han, Y.; Zhu, L.; Wang, R.; Yu, Y.; Qiu, S.; Zhao, D.;
Xiao, F.-S. Angew. Chem., Int. Ed. 2001, 40, 1258-1262. (b) J. Am. Chem.
Soc. 2001, 123, 5014-5021.
(22) Han, Y.; Xiao, F.-S.; Wu, S.; Sun, Y.; Meng, X.; Li, D.; Lin, S.; Deng,
F.; Ai, X. J. Phys. Chem. B 2001, 105, 7963
(23) . Li C.; Xiong G.; Xin Q.; Liu J.; Ying P.; Feng Z.; Li J.; Yang W.;
Wang Y.; Wang G.; Liu X.; Lin M.; Wang X.; Min E., Angew. Chem.,
Int. Ed. 1999, 38, 2220.
(24) de Moor, P. E. A.; Beelen, T. P. M.; van Santen, R. A. J. Phys. Chem. B
1999, 103, 1639.
(25) Murugavel, R.; Roesky, H. W. Angew. Chem., Int. Ed. Engl. 1997, 36,
477.
We proposed that during the preparation of MTS-9 the titanium
sites are fixed in the framework of the TS-1 nanoclusters in the
first step and are introduced into the mesoporous structure when
the nanoclusters self-assemble with the template in the second step.
JA0170044
9
J. AM. CHEM. SOC. VOL. 124, NO. 6, 2002 889