organic compounds
Data collection
between the electron-de®cient aromatic ring and the carboxyl
group. This, in addition to the interaction with the nitro O
atom discussed above, would make the ester O atom less
electron-demanding. The result of decreased electron demand
at the ester O atom would be twofold. Firstly, the strength of
the through-bond interaction would be decreased, and
secondly, the C1ÐO1 distance, which is sensitive to electron
demand (Amos et al., 1992), would be shorter than expected
for a cyclohexyl 2,4-dinitrobenzoate ester. The C1ÐO1
Bruker APEX CCD area-detector
diffractometer
' and ! scans
7269 measured re¯ections
2486 independent re¯ections
1840 re¯ections with I > 2ꢅ(I)
Rint = 0.046
ꢃmax = 25ꢀ
h = 7 ! 7
k = 8 ! 15
l = 20 ! 20
Re®nement
Re®nement on F2
R[F2 > 2ꢅ(F2)] = 0.051
wR(F2) = 0.118
S = 1.06
2486 re¯ections
w = 1/[ꢅ2(Fo2) + (0.0423P)2
+ 0.2224P]
where P = (Fo2 + 2Fc2)/3
(Á/ꢅ)max < 0.001
Ê
distance in (I) is 1.468 (3) A, which is in fact shorter than that
observed for other equatorial cyclohexyl 2,4-dinitrobenzoate
3
Ê
Áꢆmax = 0.23 e A
3
Ê
esters [1.476 (2) A; Green et al., 1994]. A similar situation
arises in the structures of phenylselenyl cyclohexyl 2,4-di-
nitrobenzoates (V) and (VI) (White et al., 2002). For example,
Ê
0.24 e A
259 parameters
All H-atom parameters re®ned
Áꢆmin
=
Table 1
Selected geometric parameters (A, ).
ꢀ
Ê
C1ÐO1
C1ÐC5
C1ÐC2
C2ÐC3
1.467 (3)
1.507 (3)
1.511 (3)
1.526 (3)
C3ÐN1
C4ÐN1
C4ÐC5
C6ÐN1
1.468 (3)
1.465 (3)
1.525 (3)
1.466 (3)
Figure 1
The two possible conformations of (I), illustrating the through-bond
interaction present in (Iax). ODNB denotes dinitrobenzoate.
O1ÐC1ÐC5
O1ÐC1ÐC2
C5ÐC1ÐC2
C1ÐC2ÐC3
106.35 (18)
111.25 (19)
110.5 (2)
N1ÐC3ÐC2
N1ÐC4ÐC5
C1ÐC5ÐC4
111.6 (2)
111.16 (19)
109.4 (2)
108.8 (2)
O1ÐC1ÐC2ÐC3
C5ÐC1ÐC2ÐC3
C1ÐC2ÐC3ÐN1
O1ÐC1ÐC5ÐC4
C2ÐC1ÐC5ÐC4
174.9 (2)
57.0 (3)
57.7 (3)
178.15 (19)
57.3 (3)
N1ÐC4ÐC5ÐC1
O2ÐC7ÐC8ÐC13
O1ÐC7ÐC8ÐC13
O2ÐC7ÐC8ÐC9
57.8 (3)
98.2 (3)
75.8 (3)
78.7 (3)
Figure 2
A view of the molecule of (I), with displacement ellipsoids drawn at the
20% probability level. H atoms have been omitted for clarity.
Data collection: SMART (Bruker, 2000); cell re®nement: SMART;
data reduction: SAINT (Bruker, 1999); program(s) used to solve
structure: SHELXTL (Bruker, 1997); program(s) used to re®ne
structure: SHELXTL; molecular graphics: SHELXTL.
ester (V), which has the carboxylate group orthogonal to the
Ê
aromatic ring, has a C1ÐO1 distance of 1.474 (2) A, which is
Ê
signi®cantly shorter than the C1ÐO1 distance of 1.487 (2) A
The authors acknowledge ®nancial support from The
University of Melbourne.
Supplementary data for this paper are available from the IUCr electronic
archives (Reference: TA1405). Services for accessing these data are
described at the back of the journal.
observed in ester (VI). Notably in ester (VI), the carboxyl
group is coplanar with the ring. This again demonstrates the
reduced electron demand of the orthogonal carboxylate
group.
References
Amos, R. D., Handy, N. C., Jones, P. G., Kirby, A. J., Parker, J. M., Percy, M. D.
& Su, J. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 549±558.
Andrau, L. & White, J. M. (2003). Acta Cryst. E59, o77±o79.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison,
Wisconsin, USA.
Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin,
USA.
Bruker (2000). SMART. Version 5.55. Bruker AXS Inc., Madison, Wisconsin,
USA.
Experimental
4-Piperidone, (II), was reduced to 4-piperidol, (III), using sodium
borohydride in ethanol. The secondary alcohol (III) was converted
into the 2,4-dinitrobenzoate ester, (I), by stirring with 2,4-nitro-
benzoyl chloride in dichloromethane in the presence of sodium
bicarbonate and dimethylaminopyridine, followed by aqueous work-
up. Crystals of (I) were grown by slow evaporation of an ether
solution.
Burgi, H. B., Dunitz, J. D. & Shefter, E. (1973). J. Am. Chem. Soc. 95, 5065±
5067.
Dean, J. A. (1992). Lange's Handbook of Chemistry, 14th ed., section 8. New
York: McGraw±Hill.
Green, A. J., Kuan, Y.-L. & White, J. M. (1994). J. Chem. Soc. Chem. Commun.
pp. 2023±2024.
Green, A. J., Kuan, Y.-L. & White, J. M. (1995). J. Org. Chem. 60, 2734±2738.
Pool, B. R., White, J. M. & Wolynec, P. (2000). J. Org. Chem. 65, 7505±7601.
White, J. M., Giordano, J. & Green, A. J. (2000). Aust. J. Chem. 53, 285±292.
White, J. M., Lambert, J. B., Spiniello, M., Jones, S. A. & Gable, R. W. (2002).
Chem. Eur. J. 8, 2799±2811.
Crystal data
3
C13H15N3O6
Mr = 309.28
Monoclinic, P21=c
Ê
a = 6.040 (3) A
b = 13.303 (5) A
Ê
c = 17.699 (7) A
ꢁ = 94.096 (8)ꢀ
V = 1418.4 (10) A
Z = 4
Dx = 1.448 Mg m
Mo Kꢂ radiation
Cell parameters from 1163
re¯ections
ꢃ = 2.3±22.5ꢀ
ꢄ = 0.12 mm
T = 130 (2) K
Ê
1
3
Ê
Rod, orange
0.30 Â 0.12 Â 0.08 mm
White, J. M. & Robertson, G. B. (1992). J. Org. Chem. 57, 4638±4644.
White, J. M. & Robertson, G. B. (1993). Acta Cryst. C49, 347±350.
ꢁ
Acta Cryst. (2003). C59, o60±o61
Andrau and White C13H15N3O6 o61