232
SULLIVAN AND EKERDT
path for HDS is the elimination of sulfur from 2,5-DHT to
TABLE 4
produce butadiene. 1-Butene, 2-butene, and n-butane are
formed by hydrogenation and isomerization. Some reac-
tion of thiophene and THT through thiolate intermediates
does occur, but these pathways are minor.
Product Distributions (mol%) for Hydrogenation
of Butadiene at 530 K
Products (mol% )
Catalyst
C1-C3
Butane
Butene
Butadiene
ACKNOWLEDGMENTS
Mo(II)
Dimeric Mo(IV)
MoS2/SiO2
0.93
1.4
0.62
44
51
18
53
48
72
2.4
0.02
9.7
This work was supported by grants from the U.S. Department of
Energy, Office of Basic Energy Sciences (Grant DE-FG03-95ER14570)
and the Exxon Foundation. We gratefully acknowledge the assistance of
Sandra Whaley and Dr. Deborah Hess of the Department of Chemistry
and Biochemistry for assistance with the XPS.
not formed in 1-butanethiol HDS. These results agree with
those on CoMoS/Al2O3 (23) and suggest that 1-butanethiol
HDS proceeds by a different mechanism than thiophene
and THT HDS. 1-Butene and n-butane are probably the
initial products with 2-butene formed by isomerization of
1-butene (23).
REFERENCES
1. Grange, P., Catal. Rev. Sci. Eng. 21, 135 (1980).
2. Prins, R., de Beer, V. H. J., and Somorjai, G. A., Catal. Rev. Sci. Eng.
31, 1 (1989).
Isolated Mo(II), which is tetrahedrally coordinated with
two Mo-O bonds and two vacancies, is an 8-electron cen-
ter. Isolated Mo(IV), which has four Mo-O bonds and one
vacancy, is a 10-electron center. Thiophene HDS activities
per coordination vacancy are similar for the Mo(II) and
Mo(IV) catalysts (Table 1), suggesting that oxidation state
may not be the dominant factor in determining the activ-
ity of a site. Rather, the number of coordination vacancies
may control the activity of a site. This would imply that each
atom of the Mo(IV) dimers is an active site and that the two
vacancies of Mo(II) act as two active sites. Unfortunately
lower oxidation state and increased coordination vacancy
are coupled and cannot be studied independently. The THT
HDS activities per vacancy for the Mo(II) and Mo(IV) cata-
lysts are close but not similar, which could suggest that the
identical thiophene HDS activities per vacancy are merely
coincidental. We believe that the higher activity of Mo(II),
compared to Mo(IV), is due to a stronger interaction of
thiophene with more reduced molybdenum atoms, thereby
increasing the rate of hydrogenation of thiophene. It ap-
pears that the oxidation state does not affect the reaction
mechanism, merely the rate of reaction.
3. Ratnasamy, P., and Sivasanker, S., Catal. Rev. Sci. Eng. 22, 401
(1980).
4. Topsøe, H., and Clausen, B. S., Catal. Rev. Sci. Eng. 26, 395 (1984).
5. Chianelli, R. R., Catal. Rev. Sci. Eng. 26, 361 (1984).
6. Topsøe, N.-Y., and Topsøe, H., J. Catal. 139, 631 (1993).
7. Daage, M., and Chianelli, R. R., J. Catal. 149, 414 (1994).
8. Drew, M. G. B., Mitchell, P. C. H., and Kasztelan, S., J. Chem. Soc.
Farad. Trans. 86, 697 (1990).
9. Sullivan, D. L., and Ekerdt, J. G., J. Catal. 172, 64 (1997).
10. Kasztelan, S., Langmuir 6, 590 (1990).
11. Angelici, R. J., Bull. Soc. Chim. Belg. 104, 265 (1995).
12. Topsøe, N.-Y., and Topsøe, H., J. Catal. 119, 252 (1989).
13. Topsøe, N.-Y., and Topsøe, H., J. Catal. 139, 641 (1993).
14. Jobic, H., Clugnet, G., Lacroix, M., Yuan, S., Mirodatos, C., and
Breysse, M., J. Am. Chem. Soc. 115, 3654 (1993).
15. Mitchell, P. C. H., Catalysis (London) 4, 175 (1981).
16. Lipsch, J. M. J. G., and Schuit, G. C. A., J. Catal. 15, 179 (1969).
17. Kolboe, S., Can. J. Chem. 47, 352 (1969).
18. Desikan, P., and Amberg, C. H., Can. J. Chem. 42, 843 (1964).
19. Kieran, P., and Kemball, C., J. Catal. 4, 394 (1965).
20. Hensen, E. J. M., Vissenberg, M. J., de Beer, V. H. J., van Veen, J. A.
R., and van Santen, R. A., J. Catal. 163, 429 (1996).
21. Sauer, N. N., and Angelici, Inorg. Chem. 26, 2160 (1987).
22. Weigand, B. C., and Friend, C. M., Chem. Rev. 92, 491 (1992).
23. Roberts, J. T., and Friend, C. M., J. Am. Chem. Soc. 108, 7204
(1986).
24. Zaera, F., Kollin, E. B., and Gland, J. L. Surf. Sci. 184, 75 (1987).
25. Liu, A. C., and Friend, C. M., J. Am. Chem. Soc. 113, 820 (1991).
26. Markel, E. J., Schrader, G. L., Sauer, N. N., and Angelici, R. J., J. Catal.
116, 11 (1989).
In summary, the activation energies and product distribu-
tions for thiophene and THT HDS suggest that the major
TABLE 5
27. Ekman, M. E., Anderegg, J. W., and Schrader, G. L., J. Catal. 117, 246
(1989).
28. Neurock, M., and van Santen, R. A., J. Am. Chem. Soc. 116, 4427
(1994).
Product Distributions (mol%) for Thiophene and Butadiene
Reaction on MoS2/SiO2 at 660 K
Products (mol% )
29. Hargreaves, A. E., and Ross, J. R. H., J. Catal. 56, 363 (1979).
30. Kraus, J., and Zdrazil, M., React. Kinet. Catal. Lett. 6, 475 (1977).
31. Zdrazil, M., Collect. Czech. Commun. 40, 3491 (1975).
32. Schulz, H., Schon, M., and Rahman, N., in “Catalytic Hydrogenation”
(L. Cerveny, Ed.), p. 201. Elsevier, Amsterdam, 1986.
33. “Sulphide Catalysts, Their Properties and Applications” (O. Weisser,
and S. Landa, Eds.), p. 181. Pergamon, New York, 1963.
34. Carvill, B. T., and Thompson, L. T., Appl. Catal. 75, 249 (1991).
35. Owens, R. J., and Amberg, C. H., Can. J. Chem. 40, 947 (1962).
C1-C3
Butane
Butene
Butadiene
Thiophene HDS
3.3
2.3
14.2
14.3
81.9
80.9
0.6
1.5
Thiophene HDS with
butadiene reaction
Thiophene HDS with
butadiene (as diluent)
2.1
9.2
54.2
35.8