HYDROGENATION OF CROTONALDEHYDE ON Pt/ZnO CATALYST
175
of oxygen adsorption on the silver catalysts was observed tion (80% crotyl alcohol selectivity in 5–20% conversion
with the increase of the chloride-covered fraction of the range) with a significant and stable activity along the time
surface. It was believed that Cl ions diminished the rate of stream after a short period of initial deactivation.
of undesired reaction, e.g., total oxidation, thus promoting
the main reaction—ethylene oxide formation. It was ob-
served that, at lower chloride concentrations, catalytic ac-
tivity even increased, while poisoning effects were observed
only at higher Cl concentrations. Electronic and geomet-
ric effects were thought to be responsible. Recently, it was
shown that modification of nickel catalysts by impregnation
with chlorine-containing compounds led not only to a de-
crease in the overall catalytic activity in thymol (3-methyl-
6-isopropylphenol) hydrogenation but also to changes in
selectivity. The latter was attributed to alteration of keto–
enol transformations of intermediate menthones and cor-
responding enols (37).
REFERENCES
1. Augustine, R. L., “Heterogeneous Catalysis in Organic Synthesis.”
Dekker, New York, 1995.
2. Touroude, R., J. Catal. 65, 110 (1980).
3. Ponec, V., Appl. Catal. A 149, 27 (1997).
4. Margitfalvi, J. L., Tompos, A., Kolosova, I., and Valyon, J., J. Catal.
174, 246 (1998).
5. Sen, B., and Vannice, M. A., J. Catal. 113, 52 (1988).
6. Makouangou, R. M., Murzin, D. Yu, Dauscher, A. E., and Touroude,
R. A., Ind. Eng. Chem. Res. 33, 1881 (1994).
7. Englisch, M., Jentys, A., and Lercher, J. A., J. Catal. 166, 25 (1997).
8. Claus, P., Schimpf, S., Scho¨del, R., Kraak, P., Mo¨rke, W., and Ho¨nicke,
D., Appl. Catal. A 165, 429 (1997).
9. Yoshitake, H., and Iwasawa, Y., J. Chem. Soc., Faraday Trans. 88(3),
503 (1992).
10. Sepulveda-Escribano, A., Coloma, F., and Rodriguez-Reinoso, F.,
J. Catal. 178, 649 (1998).
In light of our previous considerations, we can specu-
late that Cl remaining in the catalyst after reduction can
polarize even stronger Zn +, increasing therefore the in-
+
==
teractions between Zn and O
C, thus increasing the 11. Li, W., Chen, Y., Yu, C., Wang, X., Hong, Z., and Wei, Z., in “Proceed-
ings, 8th International Congress on Catalysis, Berlin, 1984,” Vol. 5,
equilibrium constant of crotonaldehyde adsorption via the
p. 205. Dechema, Frankfurt-am-Main, 1984.
12. Boccuzzi, F., Chiorino, A., Ghiotti, G., Pinna, F., Strukul, G., and
Tessari, R., J. Catal. 126, 381 (1990).
13. Sarkany, A., Zsoldos, Z., Furlong, B., Hightower, J. W., and Guczi, L.,
J. Catal. 141, 566 (1993).
14. Takezawa, N., and Iwasa, N., Catal. Today 36, 45 (1997).
15. Iwasa, N., Masuda, S., Ogawa, N., and Takesawa, N., Appl. Catal. A
125, 145 (1995).
16. Cubeiro, M. L., and Fierro, J. L. G., J. Catal. 179, 150 (1998).
17. Shirley, D. A., Phys. Rev. B 5, 4907 (1972).
==
C
O bond. In terms of Eq. [5] this means that there is an in-
crease of the KAC value, leading under certain conditions to
the overall decrease of the second term in the denominator.
Let us make simple calculations neglecting the diad-
sorbed mode of crotonaldehyde and assuming that the ki-
netic factor is constant, whatever the experiment presented
here (KABC = 0, (km0 /kn0 ) = (km0 /kn0 ) where and repre-
sents two sets of experiments). One arrives at
18. Scofield, J. H., J. Electron Spectrosc. Relat. Phenom. 8, 129 (1976).
19. Klug, H. P., and Alexander, L. E., “X-ray Diffraction Procedure for
Polycrystalline and Amorphous Materials,” 2nd ed. Wiley, New York,
1974.
20. Hecq, M., Hecq, A., Delrue, J. P., and Robert, T., J. Less Common
Meta. 64, P25 (1979).
21. Escard, J., Pontvianne, B., Chenebaux, M. T., and Cosyns, J., Bull. Soc.
Chim. Fr. 11–12, 2399 (1976).
22. Lieske, H., Lietz, G., Spindler, H., and Volter, J., J. Catal. 81, 8 (1983).
23. Le Normand, F., Borgna, A., Garetto, T. F., Apesteguia, R., and
Moraweck, B., J. Phys. Chem. 100, 9068 (1996).
(KAC/KAB
(KAC/KAB
)
(1 LC ) LC
(1 LC) LC
=
.
)
This means that taking the different selectivities 50 and
80% , observed respectively for A and B catalysts, reduced
at 673 K, the ratio of adsorption constants is four times
higher on B catalysts containing chlorine than on A cata-
lysts.
CONCLUSION
24. McCabe, R. W., Wong, C., and Woo, H. S., J. Catal. 114, 354 (1988).
25. Consonni, M., Touroude, R., and Murzin, D. Yu, Chem. Eng. Technol.
21, 7 (1998).
26. Simonik, J., and Beranek, L., Collect. Czech. Chem. Commun. 37, 353
(1972).
Catalyst A, 5% Pt/ZnO prepared from Pt(NH3)4(NO3)2
which does not contain Cl , displays more or less conven-
tional mechanisms, typical of platinum deposited on re-
ducible supports in which one can assume alloy formation
27. Horiuti, J., Res. Inst. Catal. Hokkaido Univ. 5, 1 (1957).
28. Temkin, M. I., Adv. Catal. 28, 173 (1979).
and/or migration of reducible oxide onto the metal particles 29. Yu, W., Liu, H., Liu, M., and Tao, Q., J. Mol. Catal. 138, 273 (1999).
30. Goetz, J., Volpe, M. A., Sica, A. M., Gigola, C. E., and Touroude, R.,
J. Catal. 167, 314 (1997).
31. Van Attekum, P. M. Th., and Trooster, J. M., J. Phys. 9, 2287 (1979).
like in Pt/TiO2 catalysts. For such catalysts, which display
modest crotyl alcohol selectivity in crotonaldehyde hydro-
genation, there is a correlation between reduction temper-
32. Boccuzzi, F., Chiorino, A., and Guglielminotti, E., Surf. Sci. 368, 264
==
ature, decrease in activity, and increase in C O bond hy-
(1996).
drogenation selectivity. On the contrary, the B catalyst, 5%
Pt/ZnO prepared from H2PtCl6, contains Cl ions at any
reduction temperatures, from 473 to 673 K. It forms a Pt–
Zn alloy, even at low reduction temperature (473 K), and
then shows one of the best selectivities to crotyl alcohol
achieved so far in gas-phase crotonaldehyde hydrogena-
33. Nitta, Y., Hiramatsu, Y., and Imanaka, T., J. Catal. 126, 235 (1990).
34. Yu, W., Liu, H., and Tao, Q., Chem. Commun. 1773 (1996).
35. Kul’kova, N. V., Kamenski, D., and Bonchev, D., React. Kinet. Catal.
Lett. 7, 335 (1977).
36. Campbell, C. T., and Koel, B. E., J. Catal. 92, 272 (1985).
37. Allakhverdiev, A. I., Kul’kova, N. V., and Murzin, D. Yu., Catal. Lett.
29, 57 (1994).