Paper
NJC
MOR zeolites could be attributed to the lower dimensions of References
the channels of MTW that are close to those of medium pore
1 (a) R. B. LaPierre, A. C. Rohrman, J. L. Schlenker,
J. D. Wood, M. K. Rubin and W. J. Rohrbaugh, Zeolites,
1985, 5, 346; (b) H. Gies and B. Marler, Zeolites, 1992, 12, 42;
(c) C. A. Fyfe, H. Gies, G. T. Kokotailo, B. Marler and
D. E. Cox, J. Phys. Chem., 1990, 94, 3718.
2 E. J. Rosinski, M. K. Rubin and U.S. Pat., 3832449, 1974.
3 K. Sumitani, T. Sakai, Y. Yamasaki and T. Onodera, U.S. Pat.,
4557919, 1985.
4 T. V. Whittam, Eur. Pat. Appl. EPA, 0059059, 1982.
5 T. M. Barlow, Eur. Pat. Appl. EPA, 162719, 1985.
6 D. A. Hickson, UK Pat. Appl. GB, 2079735A, 1981.
7 K. M. Reddy, I. Moudrakovski and A. Sayari, J. Chem. Soc.,
Chem. Commun., 1994, 1491.
8 L. T. Nemeth and G. F. Maher, U.S. Pat., 6872866, 2005.
9 (a) G. Pazzucconi, C. Perego, R. Millini, F. Frigeiro, R. Mansani
and D. Rancati, U.S. Pat., 6147270, 2000; (b) R. Millini,
F. Frigerio, G. Bellussi, G. Pazzucconi, C. Perego, P. Pollesel
and U. Romano, J. Catal., 2003, 217, 298; (c) C. Perego,
S. Amarilli, R. Millini, G. Bellussi, G. Girotti and G. Terzoni,
Microporous Mater., 1996, 6, 395; (d) C. W. Jones, S. I. Zones and
M. E. Davis, Appl. Catal., A, 1999, 181, 283.
10 W. Zhang and P. G. Smirniotis, Catal. Lett., 1999, 60, 223.
11 A. Katovic, B. H. Chiche, F. Di Renzo, G. Giordano and
F. Fajula, Stud. Surf. Sci. Catal., 2000, 130, 857.
12 (a) Y. Kamimura, K. Itabashi and T. Okubo, Microporous
Mesoporous Mater., 2012, 147, 149; (b) Y. Kamimura, K. Iyoki,
P. Elangovan, K. Itabashi, A. Shimojima and T. Okubo,
Microporous Mesoporous Mater., 2012, 163, 282.
13 J. P. Coulomb and N. Floquet, Stud. Surf. Sci. Catal., 2008,
174B, 913.
14 (a) S. Gopal, K. Yoo and P. G. Smirniotis, Microporous Mesoporous
Mater., 2001, 49, 149; (b) A. S. Araujo, A. Silva, M. Souza,
A. Coutinho, J. Aquino, J. A. Moura and A. G. Pedrosa, Adsorption,
2005, 11, 159.
structures. In this sense, the lower dimensions of the channel
of the MTW should add a stronger confinement effect boosting
the activity for the activation of linear alkanes.
In terms of selectivity, MTW materials show a higher yield of
C3–C4 olefins compared to MOR zeolites, with a remarkable higher
propylene yield (see Table 4). The reason for this could be explained
by the presence of less hydrogen transfer reactions towards satu-
rated paraffins, such as propane or butanes. This lower extension
of hydrogen transfer reactions results in higher olefinicity ratios for
MTW compared to MOR zeolites (see propylene/propane, butenes/
butanes and isobutene/isobutane in Table 4). The lower contribu-
tion of hydrogen transfer reactions for MTW materials should also
be attributed to the lower dimensions of the large pore channels
that preclude bimolecular reactions, which are more favoured in
the larger pores of MOR.
4. Conclusions
The synthesis of the Al-rich MTW zeolite with low Si/Al ratios
(B12) and large pore accessibility has been described by using
the proper combination of alkali metal cations, such as potas-
sium, and bulky dicationic OSDAs, such as OSDA-C4. This zeolite
presents all the aluminum atoms in framework positions, result-
¨
ing in a material with strong Bronsted acidity after cationic
exchange, as revealed by in situ infrared pyridine adsorption/
desorption at different temperatures. In addition, another MTW
material with a Si/Al ratio of 30 has been synthesized under
alkali-free conditions using OSDA-C4 as the only structure
directing agent. This Si/Al ratio is the lowest described in the
literature for the synthesis of MTW in the absence of alkali-
cations, which is an important issue since post-synthetic cationic
exchange procedures are not required to create its acid-form.
These MTW samples are very active for n-decane cracking and
show lower extension of hydrogen transfer reactions leading to a
higher yield of olefins compared to other large pore zeolites, as
mordenites.
15 J. Li, L. Lou, C. Xu and S. Liu, Catal. Commun., 2014, 50, 97.
16 A. Jackowski, S. I. Zones, S. J. Hwang and A. W. Burton,
J. Am. Chem. Soc., 2009, 131, 1092.
17 A. Corma, J. Martinez-Triguero, S. Valencia, E. Benazzi and
S. Lacombe, J. Catal., 2002, 206, 125.
18 B. Marler, N. Dehnbostel, H. H. Eulert, H. Gies and
F. Liebau, J. Inclusion Phenom., 1986, 4, 339.
19 A. B. Pinar, R. Garcia, L. Gomez-Hortiguela and J. Perez-
Pariente, Top. Catal., 2010, 53, 1297.
Acknowledgements
Financial support from the Spanish Government-MINECO 20 T. De Baerdemaeker, U. Muller and B. Yilmaz, Microporous
through ‘‘Severo Ochoa’’ (SEV 2012-0267), Consolider Ingenio
2010-Multicat and, MAT2012-37160 is acknowledged.
Mesoporous Mater., 2011, 143, 477.
21 C. A. Emeis, J. Catal., 1993, 141, 347.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015