94
J.S. Kruger et al. / Applied Catalysis A: General 411–412 (2012) 87–94
The addition of Ce likely has different effects for the Pt and Rh
[4] N. Qureshi, B.C. Saha, B. Dien, R.E. Hector, M.A. Cotta, Biomass Bioenerg. 34
(2010) 559–565.
by promoting bulk oxidation of the Pt metal, while the oxidation
state of Rh (and hence the catalytic activity) is more sensitive to the
surrounding environment than the presence of Ce [44]. In particu-
lar, the addition of Ce to Pt has been shown to inhibit oxidation of
hydrocarbons [45], consistent with the relatively higher selectivity
to olefins in the current experiments, and the observation that O2
consumption was less than 100% over PtCe over some of the C/O
range investigated for each alcohol. In the present experiments, it
appears that adding Ce to Pt also inhibits reforming reactions, as
discussed above, at least for small oxygenates and alkenes.
[5] N. Qureshi, B.C. Saha, R.E. Hector, B. Dien, S. Hughes, S. Liu, L. Iten, M.J. Bowman,
G. Sarath, M.A. Cotta, Biomass Bioenerg. 34 (2010) 566–571.
[6] K. Smith, K.-M. Cho, J. Liao, Appl. Microbiol. Biotechnol. 87 (2010) 1045–
1055.
[7] W. Higashide, Y. Li, Y. Yang, J.C. Liao, Appl. Environ. Microbiol (2011), AEM.
02454–10.
[8] V. García, J. Päkkilä, H. Ojamo, E. Muurinen, R.L. Keiski, Renew. Sust. Energ. Rev.
15 (2011) 964–980.
[9] M. Kumar, K. Gayen, Appl. Energ. 88 (2011) 1999–2012.
[10] J. Salge, G. Deluga, L. Schmidt, J. Catal. 235 (2005) 69–78.
[11] E. Wanat, B. Suman, L. Schmidt, J. Catal. 235 (2005) 18–27.
[12] L. Schmidt, R. Subramanian, J. Salge, G. Deluga, Indian Chem. Eng. Sec. B 47
(2005) 100–105.
[13] P. Dauenhauer, J. Salge, L. Schmidt, J. Catal. 244 (2006) 238–247.
[14] D. Rennard, P. Dauenhauer, S. Tupy, L. Schmidt, Energy Fuels 22 (2008)
1315–1327.
5. Conclusion
[15] N. Degenstein, R. Subramanian, L. Schmidt, Appl. Catal. A 305 (2006) 146–149.
[16] J.S. Kruger, D.C. Rennard, T.R. Josephson, L.D. Schmidt, Energy Fuels 25 (2011)
3157–3171.
Primary and secondary alcohols decompose in the autother-
mal system mainly via a carbonyl intermediate in surface and
homogeneous reactions. This result provides support to our pre-
vious proposal that molecules within in a functional group class
behave similarly in a SCT reactor [16]. Tertiary alcohols, with no ˛-
H atom available for dehydrogenation, decompose by dehydration,
although the lack of a dehydrogenation pathway does not neces-
sarily lead to lower overall reactivity in an autothermal reactor.
Because of the similarity in trends across catalysts, it is difficult
neous reactions. The actual situation is likely a convolution of
multiple reaction schemes, although some effect of catalyst is
observed in the selectivities to CO and H2. To that end, our results
are consistent with previous work [20,21] that found Pt and PtCe
to be less active reforming catalysts than Rh and RhCe for these
molecules, although as C/O approaches 0.8, all catalysts reform the
alcohol isomers to an equilibrium syngas stream. Alternatively, as
C/O approaches 2.0, high selectivities to carbonyls and light olefins,
which are important chemical intermediates, are achieved.
[17] J.G. St. Clair, I.C. Lee, Unpublished Results.
[18] A. Donazzi, A. Beretta, G. Groppi, P. Forzatti, J. Catal. 255 (2008) 241–258.
[19] D. Rennard, J. Kruger, L. Schmidt, ChemSusChem 2 (2009) 89–98.
[20] G. Jones, J. Jakobsen, S. Shim, J. Kleis, M. Andersson, J. Rossmeisl, F.
Abild-Pedersen, T. Bligaard, S. Helvig, B. Hinneman, J. Rostrup-Nielsen, I. Chork-
endorff, J. Sehested, J. Nørskov, J. Catal. 259 (2008) 147–160.
[21] J.J. Barbier, D. Duprez, Appl. Catal. B 3 (1993) 61–83.
[22] G. Ingram, S.M.H. Rizvi, Microchem. J. 20 (1975) 324–352.
[23] C. Bamford, C. Tipper (Eds.), Gas-phase Combustion, vol. 17, Elsevier, 1977, pp.
441–500.
[24] M.R. Harper, K.M.V. Geem, S.P. Pyl, S.S. Merchant, G.B. Marin, W.H. Green, Com-
bust. Flame 158 (2011) 2075.
[25] A.A. Shoaibi, A.M. Dean, J. Fuel Cell Sci. Technol. 7 (2010) 041015.
[26] R. Grana, A. Frassoldati, T. Faravelli, U. Niemann, E. Ranzi, R. Seiser, R. Cattolica,
K. Seshadri, Combust. Flame 157 (2010) 2137–2154.
[27] A.M. El-Nahas, A.H. Mangood, H. Takeuchi, T. Taketsugu, J. Phys. Chem. A 115
(13) (2011) 2837–2846.
[28] J.S. Kruger, D.C. Rennard, T.R. Josephson, L.D. Schmidt, Energy Fuels 25 (2011)
3172–3185.
[29] C. Togbé, A. Mzé-Ahmed, P. Dagaut, Energy Fuels 24 (2010) 5244–5256.
[30] C.D. Hurd, P. Perletz, S.S. Drake, J. Org. Chem. 10 (1945) 62–66.
[31] P. Jeffers, S.H. Bauer, Int. J. Chem. Kin. 6 (1974) 763–771.
[32] M. ZumMallen, L. Schmidt, J. Catal. 161 (1996) 230–246.
[33] S. Douhou, D. Perrin, R. Martin, J. Chim. Phys. 91 (10) (1994) 1597–1627.
[34] S. Santhanam, J.H. Kiefer, R.S. Tranter, N.K. Srinivasan, Int. J. Chem. Kin. 35 (2003)
381–390.
Acknowledgement
[35] M. Mavrikakis, M. Barteau, J. Mol. Catal. A. Chem. 131 (1998) 135–147.
[36] N.F. Brown, M.A. Barteau, Surf. Sci. 298 (1993) 6–17.
[37] C.J. Houtman, M.A. Barteau, J. Catal. 130 (1991) 528–546.
[38] N.F. Brown, M.A. Barteau, Langmuir 8 (1992) 862–869.
[39] N.F. Brown, M.A. Barteau, J. Phys. Chem. 100 (1996) 2269–2278.
[40] C.J. Kliewer, C. Aliaga, M. Bieri, W. Huang, C.-K. Tsung, J.B. Wood, K. Komvopou-
los, G.A. Somorjai, J. Am. Chem. Soc. 132 (2010) 13088–13095.
[41] I. Lee, F. Zaera, J. Phys. Chem. B 109 (2005) 12920–12926.
[42] X. Hu, R.A. Rosenberg, M. Trenary, J. Phys. Chem. A 115 (2011) 5785–5793.
[43] B.E. Bent, C.M. Mate, J.E. Crowell, B.E. Koel, G.A. Somorjai, J. Phys. Chem. 91
(1987) 1493–1502.
Funding for this research was graciously provided by the Depart-
ment of Defense (DOD) through Fuel Cell Energy, Inc. in Danbury,
CT.
References
[1] S. Atsumi, T. Hanai, J. Liao, Nature 451 (2008) 86–89.
[2] S. Atsumi, W. Higashide, J. Liao, Nat. Biotechnol. 27 (2009) 1177–1182.
[3] S. Atsumi, T.-Y. Wu, E.-M. Eckl, S. Hawkins, T. Buelter, J. Liao, Appl. Microbiol.
Biotechnol. 85 (2010) 651–657.
[44] S.H. Oh, P.J. Mitchell, R.M. Siewert, J. Catal. 132 (1991) 287–301.
[45] Y.-F.Y. Yao, Ind. Eng. Chem. Prod. Res. Dev. 19 (1980) 293–298.