Paper
RSC Advances
1
1 T. I. Bhuiyan, P. Arudra, M. M. Hossain, M. N. Akhtar,
A. M. Aitani, R. H. Abudawoud and S. S. Al-Khattaf, Can. J.
Chem. Eng., 2014, 92, 1271–1282.
4
. Conclusions
The hydrogen pretreatment at elevated temperature of the
calcined and non-calcined WO
reaction of ethylene and 2-butene to propylene was investigated.
The catalytic activity and stability could be improved by the 13 H. Liu, K. Tao, H. Yu, C. Zhou, Z. Ma, D. Mao and S. Zhou, C.
hydrogen pretreatment. The results showed that the non-
R. Chim., 2015, 18, 644–653.
3
/SiO
2
catalysts for metathesis 12 S. Chaemchuen, S. Phatanasri, F. Verpoort, N. Sae-ma and
K. Suriye, Kinet. Catal., 2012, 53, 247–252.
calcined catalysts with hydrogen pretreatment temperature of 14 N. Poovarawan, K. Suriye, J. Panpranot, W. Limsangkass,
ꢀ
6
50 C offered the highest activity and stability. The calcination
F. J. Santos Cadete Aires and P. Praserthdam, Catal. Lett.,
2015, 145, 1868–1875.
of the catalyst was unnecessary and it showed adverse effects
when the calcination temperature was higher than the 15 Q. Zhao, S.-L. Chen, J. Gao and C. Xu, Transition Met. Chem.,
hydrogen pretreatment temperature. The characterization
2009, 34, 621–627.
results indicated that the better tungsten dispersion, WO2.83 16 S. J. Choung and S. W. Weller, Ind. Eng. Chem. Process Des.
and WO phase compositions, and higher isolated surface
Dev., 1983, 22, 662–665.
tetrahedral tungsten oxide species are favorable to the high 17 S. Huang, S. Liu, W. Xin, J. Bai, S. Xie, Q. Wang and L. Xu, J.
activity of the metathesis reaction of ethylene and 2-butene to
Mol. Catal. A: Chem., 2005, 226, 61–68.
propylene, while the suitable amount of total acidity and acid 18 H. Liu, S. Huang, L. Zhang, S. Liu, W. Xin and L. Xu, Catal.
sites of both Brønsted and Lewis acid sites played an important
Commun., 2009, 10, 544–548.
2
role to the stability of metathesis reaction. In addition, the 19 A. J. Van Roosmalen and J. C. Mol, J. Catal., 1982, 78, 17–23.
textural properties and interaction between W species and silica 20 S. Huang, F. Chen, S. Liu, Q. Zhu, X. Zhu, W. Xin, Z. Feng,
support occurring from pretreatment temperature were not
signicant to the activity and stability.
C. Li, Q. Wang and L. Xu, J. Mol. Catal. A: Chem., 2007,
267, 224–233.
21 K. Ding, A. Gulec, A. M. Johnson, T. L. Drake, W. Wu, Y. Lin,
E. Weitz, L. D. Marks and P. C. Stair, ACS Catal., 2016, 6,
Conflicts of interest
5740–5746.
There are no conicts of interest to declare.
22 S. Lwin and I. E. Wachs, ACS Catal., 2017, 7, 573–580.
2
3 A. Andreini and J. C. Mol, J. Colloid Interface Sci., 1981, 84,
7–65.
5
Acknowledgements
24 R. C. Luckner, G. E. McConchie and G. B. Wills, J. Catal.,
1973, 28, 63–68.
The authors acknowledge the support from the Department of
Chemical Engineering, Faculty of Engineering, Chulalongkorn 25 R. Westhoff and J. A. Moulijn, J. Catal., 1977, 46, 414–416.
University. Department of Chemical Engineering, Faculty of 26 S. Maksasithorn, P. Praserthdam, K. Suriye and
Engineering, Chulalongkorn University would like to acknowl-
edge The Institutional Research Grant (The Thailand Research
D. P. Debecker, Microporous Mesoporous Mater., 2015, 213,
125–133.
Fund), IRG 5780014, and Chulalongkorn University, Contract 27 J. Thomas Richardson, Principles of catalyst development,
No. RES_57_411_21_076.
1991.
28 C. Lin, K. Tao, H. Yu, D. Hua and S. Zhou, Catal. Sci. Technol.,
2
014, 4, 4010–4019.
References
2
9 H. Liu, K. Tao, P. Zhang, W. Xu and S. Zhou, New J. Chem.,
2015, 39, 7971–7978.
30 L. Wang, Y. Wang, Y. Cheng, Z. Liu, Q. Guo, M. N. Ha and
1
W. Jiang, R. Huang, P. Li, S. Feng, G. Zhou, C. Yu, H. Zhou,
C. Xu and Q. Xu, Appl. Catal., A, 2016, 517, 227–235.
J. C. Mol, J. Mol. Catal. A: Chem., 2004, 213, 39–45.
2
3
Z. Zhao, J. Mater. Chem. A, 2016, 4, 5314–5322.
J. Towghi, A. Niaei, R. Karimzadeh and G. Saedi, Korean J. 31 Y. Wang, Q. Chen, W. Yang, Z. Xie, W. Xu and D. Huang,
Chem. Eng., 2006, 23, 8–16.
Appl. Catal., A, 2003, 250, 25–37.
4
5
M. St ¨o cker, Microporous Mesoporous Mater., 1999, 29, 3–48.
F. Cavani, N. Ballarini and A. Cericola, Catal. Today, 2007,
32 S. Maksasithorn, D. P. Debecker, P. Praserthdam,
J. Panpranot, K. Suriye and S. K. N. Ayudhya, Chin. J.
Catal., 2014, 35, 232–241.
127, 113–131.
6
7
8
9
X. Li, W. Zhang, S. Liu, L. Xu, X. Han and X. Bao, J. Phys. 33 W. Limsangkass, P. Praserthdam, S. Phatanasri,
Chem. C, 2008, 112, 5955–5960.
J. Panpranot, N. Poovarawan, W. Jareewatchara, S. Kunjara
D. P. Debecker, M. Stoyanova, U. Rodemerck and
E. M. Gaigneaux, J. Mol. Catal. A: Chem., 2011, 340, 65–76.
K. Gayapan, S. Sripinun, J. Panpranot, P. Praserthdam and
S. Assabumrungrat, RSC Adv., 2018, 8, 11693–11704.
Na Ayudhya and K. Suriye, Catal. Lett., 2014, 144, 1524–1529.
34 S.
Vorakitkanvasin,
W.
Phongsawat,
K.
Suriye,
P. Praserthdam and J. Panpranot, RSC Adv., 2017, 7,
38659–38665.
A. Spamer, T. I. Dube, D. J. Moodley, C. van Schalkwyk and 35 H. Xu, M. Sun, S. Liu, Y. Li, J. Wang and Y. Chen, RSC Adv.,
J. M. Botha, Appl. Catal., A, 2003, 255, 153–167. 2017, 7, 24177–24187.
0 A. G. Basrur, S. R. Patwardhan and S. N. Was, J. Catal., 1991, 36 X.-L. Yang, R. Gao, W.-L. Dai and K. Fan, J. Phys. Chem. C,
27, 86–95. 2008, 112, 3819–3826.
1
1
This journal is © The Royal Society of Chemistry 2018
RSC Adv., 2018, 8, 28555–28568 | 28567