9244 J. Phys. Chem. B, Vol. 102, No. 46, 1998
Carrasco-Mar´ın et al.
(6) Bansal, R. C.; Donnet, J. B.; Stoeckli, H. F. ActiVe Carbon; Marcel
Dekker: New York, 1988.
Ethene was also a secondary product obtained from the
decomposition of ether.
(7) Boehm, H. P.; Voll, M. Carbon 1970, 8, 27.
(8) Papirer, E.; Li, S.; Donnet, J. B. Carbon 1987, 25, 243.
(9) Papirer, E.; Dentzer, J.; Li, S.; Donnet, J. B. Carbon 1991, 29, 69.
(10) Studebaker, M. L. Rubber Chem. Technol. 1957, 30, 1400.
(11) Fabish, T. J.; Schleifer, D. E. Carbon 1984, 22, 19.
(12) Leo´n y Leo´n, C.; Solar, J. M.; Calemma, V.; Radovic, L. R. Carbon
1992, 30, 797.
The dehydration reaction took place only on the oxidized
samples. The activity to obtain dehydration products increased
with the total surface acidity, these reactions were catalyzed by
the carboxyl acid groups placed on the external surface of the
particles.
The original activated carbons, which were basic catalysts,
were only dehydrogenation catalysts producing acetaldehyde as
the only reaction product. Formation of this compound
increased with the oxidation of carbons. Thus, the dehydro-
genation reaction seems to take place on either basic or acid
surface groups. Furthermore, in the oxidized samples the
presence of some oxygen surface complexes, such as ether
groups, might also catalyze the dehydrogenation reaction as in
the case of silanol groups in silica samples. Active sites placed
on the external surface and also some of them placed on the
internal surface of the samples participated in the dehydroge-
nation reaction.
At the beginning of the reaction some of the active sites for
the dehydrogenation of ethanol were lost because hydrogen
remained bound to them. However, the presence of air in the
reactant mixture increased the dehydrogenation activity and
decreased the dehydration activities, because the presence of
air kept clean of hydrogen more active sites for dehydrogenation,
producing water which inhibited the dehydration.
(13) Mene´ndez, J. A.; Phillips, J.; Xia, B.; Radovic, L. R. Langmuir
1996, 12, 4404.
(14) Barton, S. S.; Evans, M. J. B.; Halliop, E.; MacDonald, J. A. F.
Carbon 1997, 35, 1361.
(15) Lo´pez-Ramo´n, M. V.; Stoeckli, H. F.; Moreno-Castilla, C.;
Carrasco-Mar´ın, F. Carbon, in press.
(16) Schwab, G. M.; Schwab-Agallidis, E. J. Am. Chem. Soc. 1949, 71,
1806.
(17) Krylov, O. V. Catalysis by Nonmetals; Academic Press: New York,
1970.
(18) Yashima, T.; Suzuki, H.; Hara, N. J. Catal. 1974, 33, 486.
(19) Rudam, R.; Stockwell, A. Catalysis: Specialist Periodical Reports.
The Chemical Society: London, 1977; Vol. 1, p 87.
(20) Tanabe, K. In Catalysis; Anderson, J. R.; Boudart, M., Eds.;
Springer-Verlag: New York, 1981; Vol. 2, p 231.
(21) Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. In New Solid Acids
and Bases. Their Catalytic Properties; Delmon, B.; Yates; J. T., Eds.;
Elsevier: Amsterdam, 1989; Vol. 15.
(22) Gervasini, A.; Auroux, A. J. Catal. 1991, 131, 190.
(23) Campelo, J. M.; Garc´ıa, A.; Herencia, J. F.; Luna, D.; Marinas, J.
M.; Romero, A. A.; J. Catal. 1995, 151, 307.
(24) Szymanski, G. S.; Rychlicki, G. Carbon 1991, 29, 489.
(25) Szymanski, G. S.; Rychlicki, G. Carbon 1993, 31, 247.
(26) Szymanski, G. S.; Rychlicki, G.; Terzyk, A. P. Carbon 1994, 32,
265.
(27) Grunewald, G. C.; Drago, R. S. J. Am. Chem. Soc. 1991, 113, 1636.
(28) Moreno-Castilla, C.; Ferro-Garc´ıa, M. A.; Joly, J. P.; Bautista-
Toledo, I.; Carrrasco-Mar´ın, F.; Rivera-Utrilla, J. Langmuir 1995, 11, 4386.
(29) Moreno-Castilla, M.; Carrrasco-Mar´ın, F.; Mueden, A. Carbon
1997, 35, 1619.
(30) Moreno-Castilla, M.; Carrrasco-Mar´ın, F.; Mueden, A. In 23rd
Biennial Conference on Carbon; Penn State University: University Park,
PA, 1997; p 190.
(31) Dubinin, M. M.; Stoeckli, H. F. J. Colloid Interface Sci. 1980, 75,
34.
(32) Ko, A. N.; Wojciechowski, B. W. Prog. React. Kinet. 1983, 12,
201.
Pretreatment of the catalysts in H2 at temperatures higher than
653 K decreases the activity for dehydrogenation caused by the
bonding of H atoms with some of the surface active sites created
after reduction of the oxygen surface complexes.
Acknowledgment. The authors acknowledge the financial
support of DGICYT, Project no. PB 94-0754. A.M. acknowl-
edges the Universidad de Granada and ICMA for the fellowship
to carry out his third-cycle studies.
References and Notes
(1) Radovic, L. R.; Rodriguez-Reinoso, F. In Chemistry and Physics
of Carbon; Thrower, P. A., Ed.; Marcel Dekker: New York, 1997; Vol.
25, p 243.
(33) March, J. AdVanced Organic Chemistry, Reactions, Mechanism,
and Structure, 4th ed.; John Wiley & Sons: New York, 1992.
(34) Matsumura, Y.; Hashimoto, K.; Yoshida, S. J. Catal., 1990, 122,
352.
(35) Matsumura, Y.; Hashimoto, K.; Yoshida, S. J. Chem. Soc., Chem.
Commun. 1987, 1599.
(36) Matsumura, Y.; Hashimoto, K.; Yoshida, S. J. Catal. 1989, 117,
135.
(37) Moreno-Castilla, C.; Carrrasco-Mar´ın, F.; Maldonado-Ho´dar, F. J.;
Rivera-Utrilla, J. Carbon 1998, 36, 145.
(2) Boehm, H. P. In AdVances in Catalysis; Eley, D., Pines, H., Weisz,
P. B., Eds.: Academic Press: New York, 1966; Vol. 16, p 179.
(3) Puri, B. R. In Chemistry and Physics of Carbon; Walker, P. L.,
Jr., Ed.; Marcel Dekker: New York, 1970; Vol. 6, p 191.
(4) Mattson, J. S.; Mark H. B. ActiVated Carbon: Surface Chemistry
and Adsorption from Solution; Marcel Dekker: New York, 1971.
(5) Kinoshita, K. Carbon: Electrochemical and Physicochemical
Properties; Wiley: New York, 1988.