C O M M U N I C A T I O N S
Table 2. Chiral Product Analysis of P450
Monooxygenase-Catalyzed Hydroxylation of Chlorinated
Phenylacetic Acid Esters
Foundation for Strategic Research (A.K. and J.E.B.) is gratefully
acknowledged. Special thanks to N. Dalleska and M. Chen for
assistance with the GC, P. Meinhold for cloning the 9-10A-F87A
variant, and R. Patel, S. Kiang, and J. Depue (Bristol-Myers Squibb)
for assistance with the buspirone analytics.
enzyme
substrate
TTN
% selectivitya
% ee
9-10A-F87A
3b (Et)
3c (Pr)
3d (Bu)
180
940
700
70
90
89
57
89
94
Supporting Information Available: Full experimental details
(PDF), and full author list for ref 17d. This material is available free
a Regioselectivity for mandelic acid ester derivatives.
enzyme catalyzes the hydroxylation of 254 ( 29 molecules per
minute with 25% coupling to cofactor consumption.
References
9-10A-F87A also hydroxylates substituted substrates such as
m-chloro phenylacetic acid (Table 2). The ee values are comparable
to those obtained for phenylacetic acid, although the highest ee
was obtained for the butyl rather than the propyl ester.
(1) de Meijere, A.; Diederich, F. Metal-catalyzed Cross-Coupling Reactions;
Wiley-VCH: Weinheim, 2004.
(2) Bornscheuer, U. T.; Kaslauskas, R. J. Hydrolases in Organic Synthesis;
Wiley-VCH: Weinheim, 1999.
(3) (a) Faber, K. Biotransformations in Organic Chemistry, 4th ed.;
Springer: Berlin, 2000. (b) Drauz, K.; Waldmann, H.; Roberts, S. M.
Enzyme Catalysis in Organic Synthesis; Wiley-VCH: Weinheim, 2002.
(c) Koeller, K. M.; Wong, C. H. Nature 2001, 409, 232-240.
(4) (a) Hummel, W. AdV. Biochem. Eng. Biotechnol. 1997, 58, 145-184. (b)
Martin-Matute, B.; Edin, M.; Bogar, K.; Kaynak, F. B.; Ba¨ckvall, J. E. J.
Am. Chem. Soc. 2005, 127, 8817-8825. (c) Pamies, O.; Ba¨ckvall, J. E.
Curr. Opin. Biotechnol. 2003, 14, 407-413.
(5) (a) Reetz, M. T.; Brunner, B.; Schneider, T.; Schulz, F.; Clouthier, C.
M.; Kayser, M. M. Angew. Chem., Int. Ed. 2004, 43, 4075-4078. (b)
Alphand, V.; Carrea, G.; Wohlgemuth, R.; Furstoss, R.; Woodley, J. M.
Trends Biotechnol. 2003, 21, 318-323.
The reaction can be improved with a system that regenerates
the expensive NADPH cofactor in situ.21 The use of a regeneration
system involving isocitrate dehydrogenase and isocitrate increased
the TTN for the production of propyl mandelate by 9-10A-F87A
from 1640 to over 5800 in a 3-h reaction with NADPH concentra-
tion maintained at 50 µM. Lower concentrations increased TTN;
high concentrations of cofactor inhibit the wild-type enzyme22 and
possibly our variants. The ee and selectivity were unchanged. Using
the regeneration system with 500 nM enzyme yielded 96%
conversion of 15 mL of 1 mM propyl phenylacetate in a batch
reaction after 7 h.
Motivated by the high enantioselectivity and activity of this
variant, we decided to test its ability to hydroxylate the R-position
of the peptide group of buspirone (Buspar, 4). Buspirone is a known
substrate of human CYP3A4,23 and both it and its human metabolite,
6-hydroxybuspirone (5), are anti-anxiety agents.24 Bioconversion
on 0.5 mL scale with 50 nM 9-10A-F87A gave 3800 TTN and
8.9% conversion of a 2 mM buspirone solution. (R)-6-hydroxy-
buspirone (5) was the sole product and was obtained with >99.5%
ee. Interestingly, this R enantioselectivity is the opposite of that
usually observed when buspirone is converted by natural microbial
cultures.24 A 7-h bioconversion with cofactor regeneration yielded
up to 72% conversion. Thus, the bacterial P450 variant efficiently
produces an authentic human metabolite of the drug.
(6) Kroutil, W.; Mischitz, M.; Faber, K. J. Chem. Soc., Perkin Trans. 1997,
1, 3629-3636.
(7) (a) Cirino, P. C.; Arnold, F. H. Angew. Chem., Int. Ed. 2003, 42, 3299-
3301. (b) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. ReV. 2004, 104,
3947-3980.
(8) (a) Munzer, D. F.; Meinhold, P.; Peters, M. W.; Feichtenhofer, S.; Griengl,
H.; Arnold, F. H.; Glieder, A.; de Raadt, A. Chem. Commun. 2005, 2597-
2599. (b) Li, Z.; Chang, D. Curr. Org. Chem. 2004, 8, 1647-1658.
(9) (a) Narhi, L. O.; Fulco, A. J. J. Biol. Chem. 1986, 261, 7160-7169. (b)
Schwaneberg, U.; Schmidt-Dannert, C.; Schmitt, J.; Schmid, R. D. Anal.
Biochem. 1999, 269, 359-366.
(10) Li, Q. S.; Schwaneberg, U.; Fischer, M.; Schmitt, J.; Pleiss, J.; Lutz-
Wahl, S.; Schmid, R. D. Biochim. Biophys. Acta 2001, 1545, 114-121.
(11) Peters, M. W.; Meinhold, P.; Glieder, A.; Arnold, F. H. J. Am. Chem.
Soc. 2003, 125, 13442-13450.
(12) (a) Appel, D.; Lutz-Wahl, S.; Fischer, P.; Schwaneberg, U.; Schmid, R.
D. J. Biotechnol. 2001, 88, 167-171. (b) Li, Q. S.; Schwaneberg, U.;
Fischer, P.; Schmid, R. D. Chem.-Eur. J. 2000, 6, 1531-1536.
(13) Meinhold, P.; Peters, M. W.; Chen, M. M.; Takahashi, K.; Arnold, F. H.
ChemBioChem 2005, 6, 1765-1768.
(14) Otey, C. R.; Bandara, B.; Lalonde, J.; Takahashi, K.; Arnold, F. H.
Biotechnol. Bioeng. 2006, 93, 494-499.
(15) (a) Saravanan, P.; Singh, V. K. Tetrahedron Lett. 1998, 39, 167-170.
(b) Furlemmeier, A.; Quitt, P.; Vogler, K.; Lanz, P. U.S. Patent
3,957,758, 1976. (c) Mill, J.; Schmiegel, K. K.; Sha, W. N. U.S. Patent,
4,391,826, 1983. (d) Coppola, G. M.; Schuster, H. F. alpha-Hydroxy Acids
in EnantioselectiVe Syntheses; Wiley-VCH: Weinheim, 1997.
(16) (a) Inghardt, T.; Johansson, A.; Svensson, A. PCT Int. Appl. WO
2002044145, 2002. (b) Inghardt, T.; Nysto¨m, J. E. PCT Int. Appl. WO
2000042059, 2000.
(17) (a) Campbell, R. F.; Fitzpatrick, K.; Inghardt, T.; Karlsson, O.; Nilsson,
K.; Reilly, J. E.; Yet, L. Tetrahedron Lett. 2003, 44, 5477-5481. (b)
Yamamoto, K.; Oishi, K.; Fujimatsu, I.; Komatsu, K. I. Appl. EnViron.
Microbiol. 1991, 57, 3028-3032. (c) Huang, H. R.; Xu, J. H.; Xu, Y.;
Pan, J.; Liu, X. Tetrahedron: Asymmetry 2005, 16, 2113-2117. (d)
DeSantis, G.; et al. J. Am. Chem. Soc. 2002, 124, 9024-9025. (e) Huerta,
F. F.; Laxmi, Y. R.; Ba¨ckvall, J. E. Org. Lett. 2000, 2, 1037-1040. (f)
Wang, P. Y.; Tsai, S. W. Enzyme Microb. Technol. 2005, 37, 266-271.
(18) (a) Lee, D. S.; Yamada, A.; Sugimoto, H.; Matsunaga, I.; Ogura, H.;
Ichihara, K.; Adachi, S.; Park, S. Y.; Shiro, Y. J. Biol. Chem. 2003, 278,
9761-9767. (b) Matsunaga, I.; Sumimoto, T.; Ueda, A.; Kusunose, E.;
Ichihara, K. Lipids 2000, 35, 365-371.
The F87A mutation likely carves out space in the BM-3 active
site and allows a wider range of substrates to be bound with a
defined orientation. By varying the chain length of the ester
substrates, we can improve catalyst selectivity and probe the active
site. Enantioselective hydroxylation in the R-position of carboxylic
acid or peptide derivatives represents a novel reaction type by P450
BM-3 and opens up a new biocatalytic route to (S)-mandelic acid
derivatives and (R)-6-hydroxybuspirone.
(19) Lussenburg, B. M.; Babel, L. C.; Vermeulen, N. P.; Commandeur, J. N.
Anal. Biochem. 2005, 341, 148-155.
(20) Sulistyaningdyah, W. T.; Ogawa, J.; Li, Q. S.; Maeda, C.; Yano, Y.;
Schmid, R. D.; Shimizu, S. Appl. Microbiol. Biotechnol. 2005, 67, 556-
562.
(21) Schwaneberg, U.; Otey, C.; Cirino, P. C.; Farinas, E.; Arnold, F. H. J.
Biomol. Screening 2001, 6, 111-117.
(22) Murataliev, M. B.; Feyereisen, R. Biochemistry 2000, 39, 12699-12707.
(23) Zhu, M.; Zhao, W.; Jimenez, H.; Zhang, D.; Yeola, S.; Dai, R.;
Vachharajani, N.; Mitroka, J. Drug. Metab. Dispos. 2005, 33, 500-507.
Acknowledgment. Financial support from the National Science
Foundation (BES9981770), NIH Grant R01 GM068664-01, NSF
Graduate Research Fellowship program (L.H.), and the Swedish
(24) Hanson, R. L.; Parker, W. L.; Brzozowski, D. B.; Tully, T. P.; Liu, M.;
Kotnois, A.; Patel, R. N. Tetrahedron: Asymmetry 2005, 16, 2711-2716.
JA061261X
9
J. AM. CHEM. SOC. VOL. 128, NO. 18, 2006 6059