Journal of the American Chemical Society
Communication
(5) (a) Wang, C.; Chen, L.-A.; Huo, H.; Shen, X.; Harms, K.; Gong,
L.; Meggers, E. Asymmetric Lewis acid catalysis directed by octahedral
rhodium centrochirality. Chem. Sci. 2015, 6, 1094. (b) Ma, J.; Shen, X.;
Harms, K.; Meggers, E. Expanding the family of bis-cyclometalated
chiral-at-metal rhodium(III) catalysts with a benzothiazole derivative.
Dalton Trans 2016, 45, 8320. (c) Li, S.-W.; Gong, J.; Kang, Q. Chiral-at-
metal Rh(III) complex-catalyzed decarboxylative Michael addition of
β-keto acids with α,β-unsaturated 2-acyl imidazoles or pyridine. Org.
Lett. 2017, 19, 1350. (d) Qurban, S.; Du, Y.; Gong, J.; Lin, S.-X.; Kang,
Q. Enantioselective synthesis of tetrahydroisoquinoline derivatives via
chiral-at-metal rhodium complex catalyzed [3 + 2] cycloaddition.
Chem. Commun. 2019, 55, 249.
Chem., Int. Ed. 2007, 46, 7293. (i) Kawatsura, M.; Komatsu, Y.;
Yamamoto, M.; Hayase, S.; Itoh, T. Enantioselective C−S bond
formation by iron/Pybox catalyzed Michael addition of thiols to (E)-3-
crotonoyloxazolidin-2-one. Tetrahedron Lett. 2007, 48, 6480. (j) Sui-
Seng, C.; Freutel, F.; Lough, A. J.; Morris, R. H. Highly efficient catalyst
systems using iron complexes with a tetradentate PNNP ligand for the
asymmetric hydrogenation of polar bonds. Angew. Chem., Int. Ed. 2008,
47, 940. (k) Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L.
Enantioselective iron-catalysed O−H bond insertions. Nat. Chem.
2010, 2, 546. (l) Nishikawa, Y.; Yamamoto, H. Iron-catalyzed
asymmetric epoxidation of β,β-disubstituted enones. J. Am. Chem.
Soc. 2011, 133, 8432.
(14) Kaufhold, O.; Hahn, F. E.; Pape, T.; Hepp, A. Ruthenium(II) and
iron(II) complexes of N-pyridyl substituted imidazolin-2-ylidenes. J.
Organomet. Chem. 2008, 693, 3435.
(15) Liu, B.; Zhang, Y.; Xu, D.; Chen, W. Facile synthesis of metal N-
heterocyclic carbene complexes. Chem. Commun. 2011, 47, 2883.
(16) The 1H-NMR resonances of all here reported Fe-PyNHC
complexes are in the diamagnetic region, indicating a low-spin ferrous
state of the iron center.
(6) Carmona, M.; Rodríguez, R.; Passarelli, V.; Lahoz, F. J.; García-
Orduna, P.; Carmona, D. Metal as source of chirality in octahedral
̃
complexes with tripodal tetradentate ligands. J. Am. Chem. Soc. 2018,
140, 912.
(7) Hartung, J.; Grubbs, R. H. Highly Z-selective and enantioselective
ring-opening/cross-metathesis catalyzed by a resolved stereogenic-at-
Ru complex. J. Am. Chem. Soc. 2013, 135, 10183.
(8) Zheng, Y.; Tan, Y.; Harms, K.; Marsch, M.; Riedel, R.; Zhang, L.;
Meggers, E. Octahedral ruthenium complex with exclusive metal-
centered chirality for highly effective asymmetric catalysis. J. Am. Chem.
Soc. 2017, 139, 4322.
(9) Note that this refers to reactive chiral-at-metal complexes in which
the metal is directly involved in catalysis as opposed to chiral metal
complexes in which catalysis is mediated entirely through the ligand
sphere (metal-templated catalysis).
(10) Chirik, P.; Morris, R. Getting down to earth: The renaissance of
catalysis with abundant metals. Acc. Chem. Res. 2015, 48, 2495.
(11) For reviews on iron catalysis in organic synthesis, see: (a) Bolm,
C.; Legros, J.; Le Paih, J.; Zani, L. Iron-catalyzed reactions in organic
synthesis. Chem. Rev. 2004, 104, 6217. (b) Enthaler, S.; Junge, K.;
Beller, M. Sustainable metal catalysis with iron: From rust to a rising
(17) (a) Van Meter, F. M.; Neumann, H. M. The rates of racemization
and dissociation of the tris(1,10-phenanthroline)iron(II) cation in
various solvents. J. Am. Chem. Soc. 1976, 98, 1388. (b) Lacour, J.; Jodry,
J. J.; Ginglinger, C.; Torche-Haldimann, S. Diastereoselective ion
pairing of TRISPHAT anions and tris(4,4’-dimethyl-2,2’-bipyridine)-
iron(II). Angew. Chem., Int. Ed. 1998, 37, 2379.
́
(18) Díez-Gonzalez, S.; Nolan, S. P. Stereoelectronic parameters
associated with N-heterocyclic carbene (NHC) ligands: A quest for
understanding. Coord. Chem. Rev. 2007, 251, 874.
̈
(19) Riener, K.; Haslinger, S.; Raba, A.; Hogerl, M. P.; Cokoja, M.;
Herrmann, W. A.; Kuhn, F. E. Chemistry of iron N-heterocyclic carbene
̈
complexes: Syntheses, structures, reactivities, and catalytic applications.
Chem. Rev. 2014, 114, 5215.
(20) Without the CF3 moiety, the iron complex is indeed less stable.
See Supporting Information for more details.
(21) Crabtree, R. H. The Organometallic Chemistry of Transition
Metals; John Wiley & Sons Inc.: Hoboken, NJ, 2014.
(22) Coe, B. J.; Glenwright, S. J. Trans-effects in octahedral transition
metal complexes. Coord. Chem. Rev. 2000, 203, 5.
̈
star? Angew. Chem., Int. Ed. 2008, 47, 3317. (c) Bauer, I.; Knolker, H.-J.
Iron catalysis in organic synthesis. Chem. Rev. 2015, 115, 3170.
(d) Fu
̈
rstner, A. Iron catalysis in organic synthesis: A critical assessment
of what it takes to make this base metal a multitasking champion. ACS
́
Cent. Sci. 2016, 2, 778. (e) Olivio, G.; Cusso, O.; Costas, M. Biologically
inspired C−H and C = C oxidations with hydrogen peroxide catalyzed
by iron coordination complexes. Chem. - Asian J. 2016, 11, 3148.
(f) Piontek, A.; Bisz, E.; Szostak, M. Iron-catalyzed cross-couplings in
the synthesis of pharmaceuticals: In pursuit of sustainability. Angew.
Chem., Int. Ed. 2018, 57, 11116. (g) Guo, M.; Corona, T.; Ray, K.; Nam,
W. Heme and nonheme high-valent iron and manganese oxo cores in
biological and abiological oxidation reactions. ACS Cent. Sci. 2019, 5,
13.
(23) Wang, P.; Tao, W.-J.; Sun, X.-L.; Liao, S.; Tang, Y. A Highly
efficient and enantioselective intramolecular Cannizzaro reaction under
TOX/Cu(II) catalysis. J. Am. Chem. Soc. 2013, 135, 16849.
(24) Wu, W.; Liu, X.; Zhang, Y.; Ji, J.; Huang, T.; Lin, L.; Feng, X.
Chiral N,N′-dioxide−FeCl3 complex-catalyzed asymmetric intramo-
lecular Cannizzaro reaction. Chem. Commun. 2015, 51, 11646.
(25) For recent reviews on catalytic asymmetric Nazarov cyclizations,
see: (a) Simeonov, S. P.; Nunes, J. P. M.; Guerra, K.; Kurteva, V. B.;
Afonso, C. A. M. Synthesis of chiral cyclopentenones. Chem. Rev. 2016,
116, 5744. (b) Vinogradov, M. G.; Turova, O. V.; Zlotin, S. G. Nazarov
reaction: Current trends and recent advances in the synthesis of natural
compounds and their analogs. Org. Biomol. Chem. 2017, 15, 8245.
(26) For an Fe(II)/Pybox-catalyzed asymmetric Nazarov cyclization,
see: Kawatsura, M.; Kajita, K.; Hayase, S.; Itoh, T. Iron- or cobalt-
catalyzed Nazarov cyclization: Asymmetric reaction and tandem
cyclization−fluorination reaction. Synlett 2010, 2010, 1243.
(27) Raja, S.; Nakajima, M.; Rueping, M. Experimental and
computational study of the catalytic asymmetric 4π-electrocyclization
of N-heterocycles. Angew. Chem., Int. Ed. 2015, 54, 2762.
(28) A related iridium-based chiral-at-metal complex (2 mol %)
catalyzed this reaction in 75% yield with 93% ee at 50 °C. However,
solvent preference for the iridium catalysis differed and basic aluminum
oxide was needed in a separate reaction step to achieve a high
diastereoselectivity. See: Mietke, T.; Cruchter, T.; Larionov, V. A.;
Faber, T.; Harms, K.; Meggers, E. Asymmetric Nazarov cyclizations
catalyzed by chiral-at-metal complexes. Adv. Synth. Catal. 2018, 360,
2093.
(12) Gopalaiah, K. Chiral iron catalysts for asymmetric synthesis.
Chem. Rev. 2013, 113, 3248.
(13) For early examples of chiral iron complexes applied to
asymmetric catalysis, see: (a) Groves, J. T.; Myers, R. S. Catalytic
asymmetric epoxidations with chiral iron porphyrins. J. Am. Chem. Soc.
1983, 105, 5791. (b) Corey, E. J.; Imai, N.; Zhang, H.-Y. Designed
catalyst for enantioselective Diels-Alder addition from a C2-symmetric
chiral bis(oxazoline)-iron(III) complex. J. Am. Chem. Soc. 1991, 113,
̈
728. (c) Baldenius, K.-U.; tom Dieck, H.; Konig, W. A.; Icheln, D.;
Runge, T. Enantioselective syntheses of cyclopentanoid compounds
from isoprene and trans-1,3-pentadiene. Angew. Chem., Int. Ed. Engl.
̈
1992, 31, 305. (d) Kundig, E. P.; Bourdin, B.; Bernardinelli, G.
Asymmetric DielsAlder reactions catalyzed by a chiral iron Lewis
acid. Angew. Chem., Int. Ed. Engl. 1994, 33, 1856. (e) Nakamura, M.;
Hirai, A.; Nakamura, E. Iron-catalyzed olefin carbometalation. J. Am.
Chem. Soc. 2000, 122, 978. (f) Costas, M.; Tipton, A. K.; Chen, K.; Jo,
D.-H.; Que, L. Modeling Rieske dioxygenases: The first example of
iron-catalyzed asymmetric cis-dihydroxylation of olefins. J. Am. Chem.
Soc. 2001, 123, 6722. (g) Legros, J.; Bolm, C. Iron-catalyzed
asymmetric sulfide oxidation with aqueous hydrogen peroxide.
Angew. Chem., Int. Ed. 2003, 42, 5487. (h) Gelalcha, F. G.; Bitterlich,
B.; Anilkumar, G.; Tse, M. K.; Beller, M. Iron-catalyzed asymmetric
epoxidation of aromatic alkenes using hydrogen peroxide. Angew.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX