Angewandte
Chemie
In conclusion we have described a homogeneous-phase
chemical method for DNA detection which combines an
allosteric signal transduction with a catalytic amplification
step. The system resembles the initial steps of biological signal
cascades such as hormone action. For example, the primary
chemical signal adrenaline is (in a simplified scheme)
allosterically transduced by a membrane receptor, thus
resulting in the activation and release of receptor-associated
G protein. The latter then combines with adenylate cyclase
and activates this enzyme for catalytic generation of cAMP
from ATP. Such biological cascades can be a source of
inspiration for the design of artificial, modular detection
systems which amplify chemical signals strongly and rapidly.
Both reaction types show a complicated dependence of rate on
the copper concentration. We found that phen/copper(II) is a
much more efficient catalyst than free copper(II) ions for the
oxidation of DCFH.
[
10] D. S. Sigman, D. R. Graham, V. DꢀAurora, A. M. Stern, J. Biol.
Chem. 1979, 254, 12269 – 12272; B. C. Bales, T. Kodama, Y. N.
Weledji, M. PitiØ, B. Meunier, M. M. Greenberg, Nucleic Acids
Res. 2005, 33, 5371 – 5379.
[11] See for example: S. L. Hempel, G. R. Buettner, Y. Q. OꢀMalley,
D. A. Wessels, D. M. Flaherty, Free Radical Biol. Med. 1999, 27,
146 – 159.
[
12] For simplicity, we denote the active species [Cu(phen)], although
both [Cu(phen)] and [Cu(phen) ] are expected to form and
2
catalyze the oxidation of DCFH (see the Supporting Informa-
tion). The catalytic activities of the in situ prepared complexes
[
Cu(tpy) ] and [Cu(tpy)] are negligible. A 1:1:1 mixture of tpy,
2
II
Received: December 5, 2005
Revised: February 24, 2006
Published online: May 9, 2006
phen, and Cu in the absence of any DNA has only 10% of the
activity of a 1:1 phen/Cu mixture under the reaction conditions
indicated for Figure 1a.
Keywords: allostery · copper · DNA · fluorescence ·
.
signal amplification
[
1] L. Zhu, E. V. Anslyn, Angew. Chem. 2006, 118, 1208 – 1215;
Angew. Chem. Int. Ed. 2006, 45, 1190 – 1196.
[
2] For a comprehensive overview on synthetic allosteric receptors
and catalysts, see: L. Kovbasyuk, R. Krämer, Chem. Rev. 2004,
1
04, 3161 – 3187.
3] N. C. Gianneschi, S. T. Nguyen, C. A. Mirkin, J. Am. Chem. Soc.
005, 127, 1644 – 1645.
4] Q. Wu, E. V. Anslyn, J. Am. Chem. Soc. 2004, 126, 14682 –
[
[
2
14683; see also L. Zhu, V. M. Lynch, E. V. Anslyn, Tetrahedron
2004, 60, 7267 – 7275.
[
5] Heterogeneous enzyme-based methods: a) F. Patolsky, Y. Weiz-
mann, I. Willner, J. Am. Chem. Soc. 2002, 124, 770 – 772; b) F.
Patolsky, E. Katz, I. Willner, Angew. Chem. 2002, 114, 3548 –
3
552; Angew. Chem. Int. Ed. 2002, 41, 3398 – 3402; c) T. Niazov,
V. Pavlov, Y. Xiao, R. Gill, I. Willner, Nano Lett. 2004, 4, 1683 –
687; d) F. Patolysky, R. Gill, Y. Weizmann, T. Mokari, U. Banin,
1
I. Willner, J. Am. Chem. Soc. 2003, 125, 13918 – 13919;
homogeneous enzyme-based methods: e) A. Saghatelian,
K. M. Guckian, D. A. Thayer, M. R. Ghadiri, J. Am. Chem.
Soc. 2003, 125, 344 – 345; f) V. Pavlov, B. Shlyahovsky, I. Willner,
J. Am. Chem. Soc. 2005, 127, 6522 – 6523; g) P. Simon, C.
Dueymes, M. Fontecave, J.-L. DØcout, Angew. Chem. 2005, 117,
2824 – 2827; Angew. Chem. Int. Ed. 2005, 44, 2764 – 2767;
Ribozyme-based: h) M. N. Stojanovic, P. de Prada, D. W.
Landry, ChemBioChem 2001, 2, 411 – 415; i) S. Sando, T.
Sasaki, K. Kanatani, Y. Aoyama, J. Am. Chem. Soc. 2003, 125,
15720 – 15721; j) J. S. Hartig, I. Gruene, S. H. Najafi-Shoushtari,
M. Famulok, J. Am. Chem. Soc. 2004, 126, 722 – 723; k) S. Sando,
A. Narita, K. Abe, Y. Aoyama, J. Am. Chem. Soc. 2005, 127,
5300 – 5301; catalysis templated by nucleic acids: l) Z. Ma, J. S.
Taylor, Proc. Natl. Acad. Sci. USA 2000, 97, 11159 – 11163; m) J.
Brunner, A. Mokhir, R. Krämer, J. Am. Chem. Soc. 2003, 125,
1
2410 – 12411.
6] M. Göritz, R. Krämer, J. Am. Chem. Soc. 2005, 127, 18016 –
8017.
[
1
[
[
7] P. Mitchell, H. Sigel, J. Am. Chem. Soc. 1978, 100, 1564 – 1570.
8] A. Odani, H. Masuda, K. Inukai, O. Yamauchi, J. Am. Chem.
Soc. 1992, 114, 6294 – 6300.
[
9] Copper-promoted formation of H O from O and cysteamine:
2
2
2
T. Kamidate, I. Kuniya, T. Segawa, H. Watanabe, Chem. Lett.
992, 887 – 890. Copper-catalyzed oxidation of DCFH to DCF in
1
the presence of O2 and reducing agents: D. E. Ryan, J.
Holzbecher, Int. J. Environ. Anal. Chem. 1971, 1, 159 – 168.
Angew. Chem. Int. Ed. 2006, 45, 4013 –4015
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4015