Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
excellent yields (72 - 96 %, Table 3, entries 1-9). The better dehydration during the reaction process. MeanwVhieilwe,AretictlheaOnnloinle,
results were found on nitrobenzene and the -F and -Cl as a reducing reagent, was oxidized to acDeOtaI:ld10e.h10y3d9e/Cw8ChCic1h00w78aKs
substituted nitrobenzenes (Table 3, entries 1, 4, 5 and 7), in situ formed 3-hydroxybutyraldehyde under alkaline
meanwhile the lowest yield of 72% was obtained on the 4- conditions (calcd for (C4H7O2) [M-H]-, m/z 87.0446) (Fig. S13,
bromonitrobenzene (Table 3, entry 9), so we think that both ESI†). Based on above observation, the proposed reaction
steric effect and electronic effect are responsible for this Ag@1- pathway was provided in Scheme 2, which is well consistent
catalysed and light-driven reduction yield.
with the reported reaction mechanism.14
We are grateful for financial support from NSFC (Grant Nos.
21671122, 21475078, 21301109), Taishan scholar’s
construction project and Shandong Provincial Natural Science
Foundation (No. ZR2018MB005).
Table 3. Ag@1 promoted selective reduction based on different substituted
nitrobenzenes a
entry
1
product
yield (%)b
95
Conflicts of interest
There are no conflicts to declare.
2
3
88
82
Notes and references
4
5
6
96
96
84
1
2
3
4
5
6
7
8
9
F. Viñes, J. R. B. Gomes, F. Illas, Chem. Soc. Rev., 2014, 43,
4922-4939.
M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q.
Zhang, D. Qin, Y. Xia, Chem. Rev., 2011, 111, 3669-3712.
S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Chem. Soc. Rev., 2015, 44,
2893-2939.
L. Sun, Y. Song, L. Wang, C. Guo, Y. Sun, Z. Liu, Z. Li, J. Phys.
Chem. C., 2008, 112, 1415-1422.
W. Zhu, P. Liu, S. Xiao, W. Wang, D. Zhang, H. Li, Appl. Catal.
B: Environ., 2015, 172, 46-51.
G. Cui, Z. Sun, H. Li, X. Liu, Y. Liu, Y. Tian, S. Yan, J. Mater.
Chem. A., 2016, 4, 1771-1783.
X. Yan, S. Li, J. Bao, N. Zhang, B. Fan, R. Li, X. Liu, Y. X. Pan,
ACS Appl. Mater. Interfaces., 2016, 8, 17060-17067.
G. Zhang, M. Mastalerz, Chem. Soc. Rev., 2014, 43, 1934-
1947.
After 1 (CCDC 1515347) was synthesized, the same organic
cage was reported using different method: M. Petryk, J.
Szymkowiak, B. Gierczyk, G. Spólnik, Ł. Popenda, A. Janiak,
M. Kwit, Org. Biomol. Chem., 2016, 14, 7495–7499.
7
8
9
95
87
72
a
Reaction conditions: Reaction conditions: different substituted nitrobenzenes
(1.18 mmol), NaOH (120 mg, 3 mmol), catalyst (8 mg, 1.0 mol % Ag equiv) and
solvent (1 mL), r.t., visible light irradiation (435 nm), in air. b Yield was determined
by GC analysis (Fig. S12, ESI†).
10 W. Xi, R. Ma, H. Wang, Z. Gao, W. Zhang, Y. Zhao, ACS
Sustainable Chem. Eng., 2018, 6, 7687−7694.
11 E. Merino, Chem. Soc. Rev., 2011, 40, 3835–3853.
12 X. Guo, C. Hao, G. Jin, H. Y. Zhu, X. Y. Guo, Angew. Chem. Int.
Ed., 2014, 53, 1973-1977.
13 D. Combita, P. Concepción, A. Corma, J. Catal., 2014, 311,
339-349.
14 B. Mondal, P. Mukherjee, J. Am. Chem. Soc., 2018, 140,
12592-12601.
15 Z. Liu, Y. Huang, Q. Xiao. H. Zhu, Green Chem., 2016, 18, 817-
825.
16 S. I. Naya, T. Niwa, T. Kume, H. Tada, Angew. Chem. Int. Ed.,
2014, 53, 7305-7309.
Scheme 2. Proposed reaction pathway.
For understanding the mechanism of this Ag@1-catalysed
selective reduction, we performed the ESI-MS measurement on
the 3-chloronitrobenzene based reaction. As shown in the ESI-
MS spectra (Fig. S13, ESI†), the intermediates of p-
chloronitrosobenzene (I) and p-chlorohydroxyaminobenzene (II)
were detected based on the observed peaks at m/z 139.9776
(calcd for (C6H4ClNO) [M-H]-, m/z 139.9903) and m/z 144.0235
(calcd for (C6H6ClNO) [M+H]+, m/z 144.0261). In addition, the
peak at m/z 267.0084 (calcd for (C12H8Cl12N2O) [M+H]+, m/z
267.0092) indicated the formation of 4,4’-dichloroazobenzene
(III) which was generated from I and II by intermolecular
17 Y. Dai, L. Chao, Y. Shen, T. Lim, J. Xu, Y. Li, H.
Niemantsverdriet, F. Besenbacher, N. Lock, R. Su, Nature
Commun., 2018, 9, 60-66.
18 W. Liu, L. Zhang, W. Yan, X. Liu, X. Yang, S. Miao, W. Wang, A.
Wang, T. Zhang, Chem. Sci., 2016, 7, 5758-5764.
19 H. Q. Li, X. Liu, Q. Zhang, S. S. Li, Y. M. Liu, H. Y. He, Y. Cao,
Chem. Commun., 2015, 51, 11217-11220.
20 X. Liu, S. Ye, H. Q. Li, Y. M. Liu, Y. Cao, K. N. Fan, Catal. Sci.
Technol., 2013, 3, 3200-3206.
21 L. Hu, X. Cao, L. Chen, J. Zheng, J. Lu, X. Sun, H. Gu, Chem.
Commun., 2012, 48, 3445-3447.
S. Peiris, S. Sarina, C. Han, Q. Xiao, H. Y. Zhu, Dalton Trans., 2017,
46, 10665–10672.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins