[
35] H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: Diverse chemical function from a
few good reactions, Angewandte Chemie-International Edition, 40 (2001) 2004-+.
36] Y. He, Y. Liang, D.J. Wang, The highly sensitive and facile colorimetric detection of the
[
glycidyl azide polymer based on propargylamine functionalized gold nanoparticles using click
chemistry, Chem Commun, 51 (2015) 12092-12094.
[
37] S. Lee, H. Koo, J.H. Na, S.J. Han, H.S. Min, S.J. Lee, S.H. Kim, S.H. Yun, S.Y. Jeong, I.C.
Kwon, K. Choi, K. Kim, Chemical Tumor-Targeting of Nanoparticles Based on Metabolic
Glycoengineering and Click Chemistry, Acs Nano, 8 (2014) 2048-2063.
[
38] T.N. Jin, M. Yan, Y. Yamamoto, Click Chemistry of Alkyne-Azide Cycloaddition using
Nanostructured Copper Catalysts, Chemcatchem, 4 (2012) 1217-1229.
39] F. Alonso, Y. Moglie, G. Radivoy, Copper Nanoparticles in Click Chemistry, Accounts of
Chemical Research, 48 (2015) 2516-2528.
40] R. Hudson, C.J. Li, A. Moores, Magnetic copper-iron nanoparticles as simple heterogeneous
catalysts for the azide-alkyne click reaction in water, Green Chemistry, 14 (2012) 622-624.
41] S. Jang, Y.J. Sa, S.H. Joo, K.H. Park, Ordered mesoporous copper oxide nanostructures as
highly active and stable catalysts for aqueous click reactions, Catalysis Communications, 81
[
[
[
(2016) 24-28.
[
42] S. Chassaing, V. Beneteau, P. Pale, When CuAAC 'Click Chemistry' goes heterogeneous,
Catalysis Science & Technology, 6 (2016) 923-957.
43] S.G. Pan, S. Yan, T. Osako, Y. Uozumi, Batch and Continuous-Flow Huisgen 1,3-Dipolar
[
Cycloadditions with an Amphiphilic Resin-Supported Triazine-Based Polyethyleneamine
Dendrimer Copper Catalyst, Acs Sustainable Chemistry & Engineering, 5 (2017) 10722-10734.
[
44] D. Astruc, D. Wang, C. Deraedt, L.Y. Liang, R. Ciganda, J. Ruiz, Catalysis Inside
Dendrimers, Synthesis-Stuttgart, 47 (2015) 2017-2031.
45] F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Unsupported Copper Nanoparticles in the 1,3-
Dipolar Cycloaddition of Terminal Alkynes and Azides, Eur J Org Chem, (2010) 1875-1884.
46] D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star
[
[
diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable,
mesoporous silica structures, Journal of the American Chemical Society, 120 (1998) 6024-6036.
[
47] R. He, Y.C. Wang, X.Y. Wang, Z.T. Wang, G. Liu, W. Zhou, L.P. Wen, Q.X. Li, X.P. Wang,
X.Y. Chen, J. Zeng, J.G. Hou, Facile synthesis of pentacle gold-copper alloy nanocrystals and their
plasmonic and catalytic properties, Nature Communications, 5 (2014).
[
48] J. Yin, S.Y. Shan, L.F. Yang, D. Mott, O. Malis, V. Petkov, F. Cai, M.S. Ng, J. Luo, B.H.
Chen, M. Engelhard, C.J. Zhong, Gold-Copper Nanoparticles: Nanostructural Evolution and
Bifunctional Catalytic Sites, Chemistry of Materials, 24 (2012) 4662-4674.
[
49] X. Liu, J. Ruiz, D. Astruc, Prevention of aerobic oxidation of copper nanoparticles by anti-
galvanic alloying: gold versus silver, Chem Commun (Camb), (2017).
50] F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Unsupported Copper Nanoparticles in the 1,3-
[
Dipolar Cycloaddition of Terminal Alkynes and Azides (April, pg 1875, 2010), European Journal
of Organic Chemistry, (2010) 5913-5913.
[
51] R.E. Schaak, A.K. Sra, Synthesis of atomically ordered nanocrystals from bimetallic
nanoparticle precursors., Abstr Pap Am Chem S, 227 (2004) U1537-U1537.
2
4