Organic Letters
Letter
Jones, A. S.; Thomas, S. P. Iron-Catalysed Hydrofunctionalisation of
Alkenes and Alkynes. ChemCatChem 2015, 7, 190−222.
J.; Dominey, A. P.; Thomas, S. P. Activation and Discovery of Earth-
Abundant Metal Catalysts Using Sodium tert-Butoxide. Nat. Chem.
2017, 9, 595−600.
(3) (a) Burgess, K.; Ohlmeyer, M. J. Transition-Metal Promoted
Hydroborations of Alkenes, Emerging Methodology for Organic
Transformations. Chem. Rev. 1991, 91, 1179−1191. (b) Crudden, C.
M.; Edwards, D. Catalytic Asymmetric Hydroboration: Recent
Advances and Applications in Carbon−Carbon Bond-Forming
Reactions. Eur. J. Org. Chem. 2003, 2003, 4695−4712. (c) Yamamoto,
Y.; Fujikawa, R.; Umemoto, T.; Miyaura, N. Iridium-Catalyzed
Hydroboration of Alkenes with Pinacolborane. Tetrahedron 2004, 60,
10695−10700. (d) Carroll, A. M.; O’Sullivan, T. P.; Guiry, P. J. The
Development of Enantioselective Rhodium-Catalysed Hydroboration
of Olefins. Adv. Synth. Catal. 2005, 347, 609−631. (e) Vogels, C. M.;
Westcott, S. W. Recent Advances in Organic Synthesis Using
Transition Metal-Catalyzed Hydroborations. Curr. Org. Chem. 2005,
9, 687−699. (f) Edwards, D. R.; Hleba, Y. B.; Lata, C. J.; Calhoun, L.
A.; Crudden, C. M. Regioselectivity of the Rhodium-Catalyzed
Hydroboration of Vinyl Arenes: Electronic Twists and Mechanistic
Shifts. Angew. Chem., Int. Ed. 2007, 46, 7799−7802. (g) Kisan, S.;
Krishnakumar, V.; Gunanathan, C. Ruthenium-Catalyzed Anti-
Markovnikov Selective Hydroboration of Olefins. ACS Catal. 2017,
7, 5950−595.
(9) For information regarding CuI, see: (a) Noh, D.; Chea, H.; Ju, J.;
Yun, J. Highly Regio- and Enantioselective Copper-Catalyzed
Hydroboration of Styrenes. Angew. Chem., Int. Ed. 2009, 48, 6062−
6064. (b) Iwamoto, H.; Kubota, K.; Ito, H. Highly Selective
Markovnikov Hydroboration of Alkyl-Substituted Terminal Alkenes
with a Phosphine−Copper(I) Catalyst. Chem. Commun. 2016, 52,
5916−5919.
(10) Zhang, G.; Zeng, H.; Wu, J.; Yin, Z.; Zheng, S.; Fettinger, J. C.
Highly Selective Hydroboration of Alkenes, Ketones and Aldehydes
Catalyzed by a Well-Defined Manganese Complex. Angew. Chem., Int.
Ed. 2016, 55, 14369−14372.
(11) Touney, E. E.; Van Hoveln, R.; Buttke, C. T.; Freidberg, M. D.;
Guzei, I. A.; Schomaker, J. M. Heteroleptic Nickel Complexes for the
Markovnikov-Selective Hydroboration of Styrenes. Organometallics
2016, 35, 3436−3439.
(12) For information regarding Fe, see: (a) MacNair, A. J.; Millet, C.
R. P.; Nichol, G. S.; Ironmonger, A.; Thomas, S. P. Markovnikov-
Selective, Activator-Free Iron-Catalyzed Vinylarene Hydroboration.
ACS Catal. 2016, 6, 7217−7221. (b) Chen, X.; Cheng, Z.; Lu, Z.
Iron-Catalyzed, Markovnikov-Selective Hydroboration of Styrenes.
Org. Lett. 2017, 19, 969−971.
(13) Reilly, S. W.; Webster, C. E.; Hollis, T. K.; Valle, H. U.
Transmetallation from CCC-NHC Pincer Zr Complexes in the
Synthesis of Air-Stable CCC-NHC Pincer Co(III) Complexes and
Initial Hydroboration Trials. Dalton Trans. 2016, 45, 2823−2828.
(14) (a) Peng, J.; Docherty, J. H.; Dominey, A. P.; Thomas, S. P.
Cobalt-Catalysed Markovnikov Selective Hydroboration of Vinyl-
arenes. Chem. Commun. 2017, 53, 4726−4729. (b) Tamang, S. R.;
Bedi, D.; Shafiei-Haghighi, S.; Smith, C. R.; Crawford, C.; Findlater,
M. Cobalt-Catalyzed Hydroboration of Alkenes, Aldehydes, and
Ketones. Org. Lett. 2018, 20, 6695−6700.
(15) Zhang, G.; Wu, J.; Wang, M.; Zeng, H.; Cheng, J.; Neary, M.
C.; Zheng, S. Cobalt-Catalyzed Regioselective Hydroboration of
Terminal Alkenes. Eur. J. Org. Chem. 2017, 2017, 5814−5818.
(16) (a) Zhang, G.; Scott, B. L.; Hanson, S. K. Mild and
Homogeneous Cobalt-Catalyzed Hydrogenation of C = C, C = O,
and C = N Bonds. Angew. Chem., Int. Ed. 2012, 51, 12102−12106.
(b) Zhang, G.; Vasudevan, K. V.; Scott, B. L.; Hanson, S. K.
Understanding the Mechanisms of Cobalt-Catalyzed Hydrogenation
and Dehydrogenation Reactions. J. Am. Chem. Soc. 2013, 135, 8668−
8681. (c) Zhang, G.; Hanson, S. K. Cobalt-Catalyzed Acceptorless
Alcohol Dehydrogenation: Synthesis of Imines from Alcohols and
Amines. Org. Lett. 2013, 15, 650−653. (d) Zhang, G.; Hanson, S. K.
Cobalt-Catalyzed Tansfer Hydrogenation of C = O and C = N Bonds.
Chem. Commun. 2013, 49, 10151−10153. (e) Zhang, G.; Yin, Z.; Tan,
J. Cobalt-Catalyzed Tansfer Hydrogenation of Olefins. RSC Adv.
2016, 6, 22419−22423. (f) Yin, Z.; Zeng, H.; Wu, J.; Zheng, S.;
Zhang, G. Cobalt-Catalyzed Synthesis of Aromatic, Aliphatic, and
Cyclic Secondary Amines via a “Hydrogen-Borrowing” Strategy. ACS
Catal. 2016, 6, 6546−6550. (g) Zhang, G.; Yin, Z.; Zheng, S. Cobalt-
Catalyzed N-Alkylation of Amines with Alcohols. Org. Lett. 2016, 18,
300−303. (h) Zhang, G.; Wu, J.; Zeng, H.; Zhang, S.; Yin, Z.; Zheng,
S. Cobalt-Catalyzed α-Alkylation of Ketones with Primary Alcohols.
Org. Lett. 2017, 19, 1080−1083.
̈
(4) Bauer, I.; Knolker, H.-J. Iron Catalysis in Organic Synthesis.
Chem. Rev. 2015, 115, 3170−3387.
(5) Greenhalgh, M. D.; Thomas, S. P. Iron-Catalysed Reductive
Crooss-Coupling of Alkenes. ChemCatChem 2014, 6, 1520−1522 and
references therein .
(6) (a) Obligacion, J. V.; Chirik, P. J. Highly Selective Bis(imino)-
pyridine Iron-Catalyzed Alkene Hydroboration. Org. Lett. 2013, 15,
2680−2683. (b) Obligacion, J. V.; Chirik, P. J. Bis(imino)pyridine
Cobalt-Catalyzed Alkene Isomerization−Hydroboration: A Strategy
for Remote Hydrofunctionalization with Terminal Selectivity. J. Am.
Chem. Soc. 2013, 135, 19107−19110. (c) Scheuermann, M. L.;
Johnson, E. J.; Chirik, P. J. Alkene Isomerization−Hydroboration
Promoted by Phosphine-Ligated Cobalt Catalysts. Org. Lett. 2015, 17,
2716−2719. (d) Palmer, W. N.; Diao, T.; Pappas, I.; Chirik, P. J.
High-Activity Cobalt Catalysts for Alkene Hydroboration with
Electronically Responsive Terpyridine and α-Diimine Ligands. ACS
Catal. 2015, 5, 622−626. (e) Chirik, P. J. Iron- and Cobalt-Catalyzed
Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong
Field Ligands. Acc. Chem. Res. 2015, 48, 1687−1695.
(7) (a) Zhang, L.; Peng, D.; Leng, X.; Huang, Z. Iron-Catalyzed,
Atom-Economical, Chemo- and Regioselective Alkene Hydroboration
with Pinacolborane. Angew. Chem., Int. Ed. 2013, 52, 3676−3680.
(b) Zhang, L.; Zuo, Z.; Leng, X.; Huang, Z. A Cobalt-Catalyzed
Alkene Hydroboration with Pinacolborane. Angew. Chem., Int. Ed.
2014, 53, 2696−2700. (c) Zhang, L.; Zuo, Z.; Wan, X.; Huang, Z.
Cobalt-Catalyzed Enantioselective Hydroboration of 1,1-Disubsti-
tuted Aryl Alkenes. J. Am. Chem. Soc. 2014, 136, 15501−15504.
(d) Teo, W. J.; Ge, S. Cobalt-Catalyzed Enantioselective Synthesis of
Chiral gem-Bis(boryl)alkanes. Angew. Chem., Int. Ed. 2018, 57,
12935−12939. (e) Wang, C.; Ge, S. Versatile Cobalt-Catalyzed
Enantioselective Entry to Boryl-Functionalized All-Carbon Quater-
nary Stereogenic Centers. J. Am. Chem. Soc. 2018, 140, 10687−10690.
(8) (a) Wu, J. Y.; Moreau, B.; Ritter, T. Iron-Catalyzed 1,4-
Hydroboration of 1,3-Dienes. J. Am. Chem. Soc. 2009, 131, 12915−
12917. (b) Greenhalgh, M. D.; Thomas, S. P. Chemo-, Regio-, and
Stereoselective Iron-Catalysed Hydroboration of Alkenes and
Alkynes. Chem. Commun. 2013, 49, 11230−11232. (c) Chen, J.; Xi,
T.; Lu, Z. Iminopyridine Oxazoline Iron Catalyst for Asymmetric
Hydroboration of 1,1-Disubtituted Aryl Alkenes. Org. Lett. 2014, 16,
6452−6455. (d) Chen, J.; Xi, T.; Ren, X.; Cheng, B.; Guo, J.; Lu, Z.
Asymmetric Cobalt Catalysts for Hydroboration of 1,1-Disubstituted
Alkenes. Org. Chem. Front. 2014, 1, 1306−1309. (e) Zheng, J.; Sortais,
J.- B.; Darcel, C. [(NHC)Fe(CO)4] Efficient Pre-catalyst for Selective
Hydroboration of Alkenes. ChemCatChem 2014, 6, 763−766.
(f) Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. Regulation of
Iron-Catalyzed Olefin Hydroboration by Ligand Modifications at a
Remote Site. ACS Catal. 2015, 5, 411−415. (g) Docherty, J. H.; Peng,
(17) Wu, J.; Zeng, H.; Cheng, J.; Zheng, S.; Golen, G. A.; Manke, D.
R.; Zhang, G. Cobalt(II) Coordination Polymer as a Pre-catalyst for
Selective Hydroboration of Aldehydes, Ketones and Imines. J. Org.
Chem. 2018, 83, 9442−9448.
(18) Buslov, I.; Keller, S. C.; Hu, X. Alkoxy Hydrosilanes as
Surrogates of Gaseous Silanes for Hydrosilylation of Alkenes. Org.
Lett. 2016, 18, 1928−1931.
(19) Collins, K. D.; Glorius, F. A. Robustness Screen for the Rapid
Assessment of Chemical Reactions. Nat. Chem. 2013, 5, 597−601.
E
Org. Lett. XXXX, XXX, XXX−XXX