ACS Medicinal Chemistry Letters
LETTER
with a small hydrophobic pocket for the C50-Me. While these
cytotoxicity trends are not inconsistent with the models for
Naþ/Kþ ATPase inhibition, further study is needed. The effi-
ciency with which this systematic SAR-study was conducted was
enabled by the flexibility of this unique de novo approach to
carbohydrate synthesis. Further efforts aimed at optimizing cyto-
toxicity and elucidation of mechanism are ongoing and will be
reported in due course.
(9) Wang, H.-Y. L.; Xin, W.; Zhou, M.; Stueckle, T. A.; Rojanasakul,
Y.; O’Doherty, G. A. Stereochemical Survey of Digitoxin Monosacchar-
ides. ACS Med. Chem. Lett. 2011, 2 (1), pp 73–78.
(10) Wang, H.-Y. L.; Rojanasakul, Y.; O’Doherty, G. A. Synthesis
and Evaluation of the R-D-/R-L-Rhamnosyl and Amicetosyl Digitox-
igenin Oligomers as Anti-tumor Agents. ACS Med. Chem. Lett. 2011,
(see DOI 10.1021/ml100290d).
(11) Lopez-Lazaro, M.; Pastor, N.; Azrak, S. S.; Ayuso, M. J.; Austin,
C. A.; Cortes, F. Digitoxin Inhibits the Growth of Cancer Cell Lines at
Concentrations Commonly Found in Cardiac Patients. J. Nat. Prod.
2005, 68, 1642–1645.
’ ASSOCIATED CONTENT
(12) Yoda, A. Structure-Activity Relationships of Cardiotonic
Steroids for the Inhibition of Sodium- and Potassium-Dependent
Adenosine Triphosphatase. Mol. Pharmacol. 1973, 9, 51–60.
(13) Brown, L.; Erdmann, E.; Thomas, R. Digitalis structure-activ-
ity relationship analyses: Conclusions from indirect binding studies with
cardiac (Naþ þ Kþ)-ATPase. Biochem. Pharmacol. 1983, 32, 2767–
2774.
S
Supporting Information. Assay protocols, statistical anal-
b
ysis data, synthetic procedures, characterization data, and NMR
spectra. This information is available free of charge via the
(14) Chiu, F. C. K.; Watson, T. R. Conformational Factors in
Cardiac Glycoside Activity. J. Med. Chem. 1985, 28, 509–515.
(15) Rathore, H.; From, A. H. L.; Ahmed, K.; Fullerton, D. S.
Cardiac Glycosides. 7. Sugar Stereochemistry and Cardiac Glycoside
Activity. J. Med. Chem. 1986, 29, 1945–1952.
(16) Katz, A.; Lifshitz, Y.; Bab-Dinitz, E.; Kapri-Pardes, E.; Goldshleger,
R.; Tal, D. M.; Karlish, S. J. D. Selectivity of Digitalis Glycosides for
Isoforms of Human Na,K-ATPase. J. Biol. Chem. 2010, 285, 19582–
19592.
(17) Wansapura, A. N.; Lasko, V.; Xie, Z.; Fedorova, O. V.; Bagrov,
A. Y.; Lingrel, J. B.; Lorenz, J. N. Marinobufagenin enhances cardiac
contractility in mice with ouabain-sensitive R1 Naþ-Kþ-ATPase. Am.
J. Physiol. Heart Circ. Physiol. 2009, 296, 1833–1839.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail addresses: S.-W.K., s.kang@neu.edu; Y.R., yrojan@
hsc.wvu.edu; G.A.O., g.odoherty@neu.edu.
Author Contributions
All the biological experimental work was performed by H.-Y.L.W.
Analogues synthesis was primarily carried out by H.-Y.L.W., with
significant contributions being made by B.W., Q.Z., and S.-W.K.
The experimental design, data analysis and manuscript prepara-
tion was performed by all the authors.
(18) Langenhan, L. M.; Peters, N. R.; Guzei, I. A.; Hoffmann, M.;
Thorson, J. S. Enhancing the anticancer properties of cardiac glycosides
by neoglycorandomization. Proc. Natl. Acad. Sci. U.S.A. 2005, 102,
12305–12310.
(19) For the synthesis of R/β-L-Boc pyranones, see: Guo, H.;
O’Doherty, G. A. De Novo Asymmetric Synthesis of Anthrax Tetra-
saccharide and Related Tetrasaccharide. J. Org. Chem. 2008, 73, 5211–
5220.
(20) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R.
Ruthenium (II)-Catalyzed Asymmetric Transfer Hydrogenation of
Ketones Using a Formic Acid-Triethylamine Mixture. J. Am. Chem.
Soc. 1996, 118, 2521–2522.
’ ACKNOWLEDGMENT
We thank Anand Krishnan Iyer (Hampton University), Todd
A. Stueckle, and Yongju Lu (West Virginia University) for their
advice on cell culturing and cytotoxicity assays. We also thank
Jonathan Boyd (West Virginia University) for his help with data
analysis. We are grateful to the NIH (GM088839) and NSF
(CHE-0749451) for the support of our research.
’ REFERENCES
(1) Greeff, K. Cardiac Glycosides, Part 1: Experimental Pharmacology.
Handbook of Experimental Pharmacology; Springer-Verlag: Berlin, New
York, 1981; Vol. 56.
(2) Forbush, B. Cardiotonic Steroid Binding to Na,K-ATPase. Curr.
Top. Membr. Transp. 1983, 19, 167–201.
(3) Bers, D. M. Calcium Cycling and Signaling in Cardiac Myocytes.
Annu. Rev. Physiol. 2008, 70, 23–49.
(4) Stenkvist, B.; Bengtsson, E.; Eriksson, O.; Holmquist, J.; Nordin,
B.; Westman-Naeser, S. Cardiac glycosides and breast cancer. Lancet
1979, 1, 563.
(5) Stenkvist, B.; Bengtsson, E.; Dahlqvist, B.; Eriksson, O.; Jarkrans,
T.; Nordin, B. N. Cardiac glycosides and breast cancer, revisited. N. Engl.
J. Med. 1982, 306, 484.
(6) Haux, J.; Solheim, O.; Isaksen, T.; Angelsen, A. Digitoxin, in non-
toxic concentrations, inhibits proliferation and induces cell death in
prostate cancer cell lines. Z. Onkol. 2000, 32, 11–16.
(7) Newman, R. A.; Yang, P.; Pawlus, A. D.; Block, K. I. Cardiac
Glycosides as Novel Cancer Therapeutic Agents. Mol. Interventions
2008, 8, 36–49.
(8) Iyer, A. K. V.; Zhou, M.; Azad, N.; Elbaz, H.; Wang, L.; Rogalsky,
D. K.; Rojanasakul, Y.; O’Doherty, G. A.; Langenhan, J. M. Direct
Comparison of the Anticancer Activities of Digitoxin MeON-Neoglyco-
sides and O-Glycosides: Oligosaccharide Chain Length-Dependent
Induction of Caspase-9-Mediated Apoptosis. ACS Med. Chem. Lett.
2010, 1, 326–330.
(21) Achmatowicz, O.; Bukowski, P.; Szechner, B.; Zwierzchowska,
Z.; Zamojski, A. Synthesis of methyl 2,3-dideoxy-DL-alk-2-enopyrano-
sides from furan compounds: A general approach to the total synthesis of
monosaccharides. Tetrahedron 1971, 27, 1973–1996.
(22) Li, M.; O’Doherty, G. A. An enantioselective synthesis of
phomopsolide D. Tetrahedron Lett. 2004, 45, 6407–6411.
(23) Guo, H.; O’Doherty, G. A. De Novo Asymmetric Synthesis of
D- and L-Swainsonine. Org. Lett. 2006, 8, 1609–1612.
(24) Coral, J. A.; Guo, H.; Shan, M.; O’Doherty, G. A. A De Novo
Asymmetric Approach to 8a-epi-Swainsonine. Heterocycles 2009, 79,
521–529.
(25) VanRheenen, V.; Kelly, R. C.; Cha, D. Y. An improved catalytic
OsO4 oxidation of olefins to cis-1,2-glycols using tertiary amine oxides as
the oxidant. Tetrahedron Lett. 1976, 17, 1973–1976.
(26) Haukaas, M. H.; O’Doherty, G. A. Enantioselective Synthesis of
2-Deoxy- and 2,3-Dideoxyhexoses. Org. Lett. 2002, 4, 1771–1774.
(27) Chanvorachote, P.; Nimmannit, U.; Stehlik, C.; Wang, L.; Jiang,
B.-H.; Ongpipatanakul, B.; Rojanasakul, Y. Nitric Oxide Regulates Cell
Sensitivity to Cisplatin-Induced Apoptosis through S-Nitrosylation and
Inhibition of Bcl-2 Ubiquitination. Cancer Res. 2006, 66, 6353–6360.
(28) Mosmann, T. Rapid colorimetric assay for cellular growth and
survival: application to proliferation and cytotoxicity assays. J. Immunol.
Methods 1983, 65, 55–63.
263
dx.doi.org/10.1021/ml100291n |ACS Med. Chem. Lett. 2011, 2, 259–263