QUINOLINE FORMATION VIA COMBES REACTION
Preparation of intermediates
Yamashkin, E. A. Oreshkina, Chem. Heterocycl. Compos. 2006, 42(6),
2006.
[10] J. A. Knight, H. K. Porter, P. K. Calaway, J. Am. Chem. Soc. 1944, 66,
1893.
[11] W. S. Johnson, E. Woroch, F. J. Mathews, J. Am. Chem. Soc. 1947, 69,
566.
4-Phenylimino-5,5,5-trifluoro-2-pentanone (II-2a),
4-phenylimino-1,1,1-trifluoro-2-pentanone (II-3a),
4-anilino-1,1,1-trifluoro-3-penten-2-one (II-3a0)
To a solution of 3.08 g (20.0 mmol) 1a in 100 ml absolute ethanol
is added 1.86 g (20.0 mmol) aniline and heated to 70 8C with
stirring for 4 h. The solvent was removed under reduced pressure
giving 4.03 g (88%) of a 30:65:5 mixture (determined by
[12] F. Misani, M. T. Bogert, J. Am. Chem. Soc. 1945, 67, 347.
[13] E. A. Steck, L. L. Hallock, A. J. Holland, L. T. Fletcher, J. Am. Chem. Soc.
1948, 70, 1012.
[14] E. A. Steck, L. L. Hallock, A. J. Holland, J. Am. Chem. Soc. 1946, 68,
pp. 129, 132, 380.
[15] J. C. Sloop, C. L. Bumgardner, W. D. Loehle, J. Fluor. Chem. 2002, 118,
135.
[16] W. S. Johnson, F. J. Mathews, J. Am. Chem. Soc. 1944, 66, 210.
[17] E. Roberts, E. E. Turnur, J. Chem. Soc. 1927, 1832.
[18] R. Huisgen, Annales 1949, 564, 16.
[19] J. L. Born, J. Org. Chem. 1972, 37, 3952.
[20] J. C. Sloop, C. L. Bumgardner, G. Washington, W. D. Loehle, S. S. Sankar,
A. B. Lewis, J. Fluor. Chem. 2006, 127, 780.
[21] C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd
edn, (pp. 107, 329, 375) Wiley-VCH Verlag GmbH & Co., KGaA,
Weinheim, 2003.
[22] J. W. Bunting, J. P. Kanter, J. Am. Chem. Soc. 1993, 115, 11705.
[23] Y. Chiang, A. J. Kresge, P. A. Walsh, J. Am. Chem. Soc. 1982, 104, 6122.
[24] A. Gero, J. Org. Chem. 1954, 19, 1960.
[25] J. Reid, M. Calvin, J. Am. Chem. Soc. 1950, 72, 2948.
[26] J. C. Sloop, C. L. Bumgardner, J. Fluor. Chem. 1992, 56, 141.
[27] T. H. Lowry, K. S. Richardson, Mechanism and Theory in Organic
Chemistry, 3rd edn, (pp. 151, 318–320; 702–720; 726) Harper &
Row Publishers, New York, 1987.
19
integration of F NMR resonances) of II-2a:II-3a:II-3a0 as a
brownish oil. Chromatography of the crude reaction mixture
(20% EtOAC/hexane) resulted in isomerization of II-3a0 to II-3a.
NMR: II-2a: 1H: d 2.22 (s, 3H), 2.99 (s, 2H), 7.00–7.12 (m, 3H), 7.46 (t,
J ¼ 7.42 Hz, 2H). 13C:
d
22.0, 30.6, 118.3 (—CF3,
q, 1JC—F ¼ 275.1 Hz), 123.5, 128.6, 130.2, 152.1, 166.2 (C—CF3,
q, 2JC—F ¼ 34.2 Hz), 208.1. 19F: d: ꢁ81.5 (—CF3, s, 3F). II-3a: 1H: d
2.01 (s, 3H), 2.86 (s, 2H), 7.00–7.12 (m, 3H), 7.41 (t, J ¼ 7.40 Hz, 2H).
13C: d 22.2, 27.9, 117.8 (ꢁCF3, q, 1JC—F ¼ 269.2 Hz), 120.7, 126.9,
128.7, 150.1, 162.1 (C—CF3, q, 2JC—F ¼ 35.4 Hz), 208.1. 19F: d:
ꢁ83.1 (—CF3, s, 3F). II-3a0 (crude reaction mixture): 1H: d 5.7 (s,
1H), 11.4, (—NH, bs, 1H). 19F: d: ꢁ75.2 (—CF3, s, 3F). Analysis:
calulated for C11H10F3NO: C: 57.64%, H: 4.40%, N: 6.11%. Found:
C: 57.69%, H: 4.42%, N: 6.16%.
Acknowledgements
[28] E. B. Mulloch, R. Searby, R. Suschitzky, J. Chem. Soc. C 1970,
829.
[29] O. Kentaro, T. Adachi, M. Tomie, K. Kondo, I. Inoue, J. Chem. Soc. Perkin
Trans 1 1972, 173.
[30] K. A. Clayton, D. Black, J. B. Harper, Tetrahedron 2008, 64, 3183.
[31] R. Linderman, K. Kirollos, Tetrahedron Lett. 1989, 31, 2689.
[32] A. Bondi, J. Phys. Chem. 1964, 68, 441.
The author is indebted to Dr Gary Washington for the useful
kinetics discussions. The author thanks the USMA Faculty
Research Fund for providing financial support for this work.
[33] J. C. Sloop, B. Lechner, G. Washington, C. L. Bumgardner, W. D. Loehle,
W. Creasy, Int. J. Chem. Kin. 2008, 40(7), 370.
REFERENCES
[34] J. A. Hirsch, Concepts in Theoretical Organic Chemistry, (pp. 112–123;
143–144) Allyn & Bacon Inc., Boston, 1974.
[35] J. Hine, Physical Organic Chemistry, 2nd edn, (pp. 255–257.) McGraw-
Hill Book Co., Inc., New York, 1962.
[36] L. P. Hammett, Physical Organic Chemistry, (pp. 365–367), McGraw-Hill
book Co., Inc., New York, 1970.
[37] M. T. Tribble, J. G. Traynham, J. Am. Chem. Soc. 1969, 91, 379.
[38] H. C. Brown, Y. Okamoto, J. Am. Chem. Soc. 1958, 79, 4979.
[39] Correlation of log(k/k0) for Table 1, entry 18 was effected with
sþp þ so. This is consistent with the presence of two EDGs (1 ortho,
1 para) capable of simultaneous mesomeric interaction with a
growing positive charge in the rate determining annulation tran-
sition state. Correlation of log(k/k0) for o,p-anilines was effected
with sþm.
[1] G. S. Dow, T. N. Heady, A. K. Bhattacharjee, D. Caridha, L. Gerena, M.
Gettayacamin, C. A. Lanteri, N. Obaldia, III, N. Roncal, T. Shearer, P. L.
Smith, A. Tungtaeng, L. Wolf, M. Cabezas, D. Yourick, K. S. Smith,
Antimicrob. Agents Chemother. 2006, 50(12), 4132–4143.
[2] Y. Katayama, T. Ootsubo, S. Tsuda, Jpn. Kokai Tokkyo Koho 1993, 3.
[3] K. M. Muraleedharan, M. A. Avery, Eds, J. B. Taylor, D. J. Triggle,
Comprehensive Medicinal Chemistry II, (Vol. 7, p. 765) Elsevier Ltd.,
Oxford, 2006.
[4] Eds.: R. Filler, Y. Kobayashi, Biomedical Aspects of Fluorine Chemistry,
Kodansha, Tokyo, 1982.
[5] M. Conrad, L. Limpach, Bericht 1887, 20, 944 L-948.
[6] L. Knorr, Annales 1886, 236, 69.
[7] L. Knorr, Annales 1888, 245, 357.
[8] C. Combes, Chem. Ber. 1896, 29, 2456.
¨
[40] E. S. Amis, Solvent Effects on Reaction Rates and Mechanisms,
(pp. 65–67) Academic Press, New York, 1966.
[41] L. P. Hammett, J. Am. Chem. Soc. 1937, 59, 96.
[42] J. E. Leffler, J. Org. Chem. 1955, 20, 1202.
[9] The Friedlander and Pfitzinger methods use an o-carbonyl or
o-carboxy aniline, while the Skraup and Doebner-Miller syntheses
use an a,b-unsaturated carbonyl electrophile with aniline. See S. A.
Copyright ß 2008 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2009, 22 110–117