J. Koivukorpi et al. / Journal of Molecular Structure 892 (2008) 53–57
57
Table 3
Some geometric parameters of 1
X–Y
d(X–Y) [Å]
W–X–Y–Z
(WXYZ) [°]
D–Hꢂ ꢂ ꢂA
d(Dꢂ ꢂ ꢂA) [Å]
(DHA) [°]
S(1)–C(28)
S(1)–C(31)
S(2)–C(32)
S(2)–C(35)
O(3)–C(3)
O(24)–C(24)
N(24)–C(24)
N(24)–C(25)
N(26)–C(26)
N(26)–C(27)
1.720(8)
1.725(7)
1.712(8)
1.714(12)
1.414(7)
1.245(6)
1.327(8)
1.452(8)
1.453(7)
1.467(7)
C13–C17–C20–C22
C17–C20–C22–C23
C20–C22–C23–C24
C22–C23–C24–N24
C23–C24–N24–C25
C24–N24–C25–C26
N24–C25–C26–N26
C25–C26–N26–C27
C26–N26–C27–C28
N26–C27–C28–S1
S1–C31–C32–S2
168.4(4)
ꢀ176.7(5)
54.0(7)
O3–H3ꢂ ꢂ ꢂN26
N24–H24ꢂ ꢂ ꢂO3
N26–H26ꢂ ꢂ ꢂO24
2.786(6)
2.849(6)
2.918(8)
174
175
132
ꢀ145.0(5)
175.3(5)
ꢀ85.8(7)
ꢀ179.8(5)
ꢀ78.6(6)
ꢀ66.6(8)
ꢀ83.3(7)
ꢀ170.8(4)
Table 4
hydes are useful starting compounds in preparation of bile acid–
heteroaromatic conjugates. Reduction of the formed Schiff bases
The glass transition temperatures, melting points, enthalpy and heat capacity changes
of 1-4
4
by NaBH produced methylene linked heteroaryl derivatives in
Compound
T
m
, T
g
p
(DH); [DC ]
moderate to good yields. These conjugates are forwarded further
for complex formation studies and for using as building blocks in
bile acid derived receptors. Especially interesting is also their use
in preparation of silver and other metal nanoparticles. These stud-
ies are in progress.
1
T
T
g
44.3
44.6
[0.57]
[0.59]
1st scan
2nd scan
g
2
3
4
T
T
g
g
61.6
80.6
[0.30]
[0.59]
1st scan
2nd scan
T
T
g
g
62.9
99.5
[0.32]
[0.49]
1st scan
2nd scan
Acknowledgements
T
T
m
160.8
45.3
[99.56]
[0.37]
1st scan
2nd scan
g
The authors acknowledge Spec. Lab. Tech. Mirja Lahtiperä for
running ESI-TOF mass spectra, Spec. Lab. Tech. Reijo Kauppinen
for his help in running the NMR spectra, and Lab. Tech. Elina Hau-
takangas for elemental analysis.
T
m
= melting temperature (°C),
D
H = enthalpy change (J gꢀ1), T
g
= glass transition
+
1
ꢀ1
temperature (°C), = heat capacity change (J g °C ).
DC
p
References
[
[
[
1] A. Enhsen, W. Kramer, G. Wess, Drug. Discov. Today 3 (1998) 409.
2] A.F. Hofmann, Ital. J. Gastroenterol. 27 (1995) 106.
3] E. Virtanen, E. Kolehmainen, Eur. J. Org. Chem. (2004) 3385 and references
cited therein.
[
[
[
[
[
[
4] E. Virtanen, J. Tamminen, J. Linnanto, P. Mänttäri, P. Vainiotalo, E.
Kolehmainen, J. Incl. Phenom. Macroc. Chem. 43 (2002) 319.
5] E. Virtanen, J. Tamminen, M. Haapala, P. Mänttäri, R. Kauppinen, E.
Kolehmainen, Magn. Reson. Chem. 41 (2003) 567.
6] J. Koivukorpi, A. Valkonen, E. Kolehmainen, J. Mol. Struct. 693 (2004)
81.
7] E. Virtanen, J. Koivukorpi, J. Tamminen, P. Mänttäri, E. Kolehmainen, J.
Organomet. Chem. 668 (2003) 43.
8] J. Koivukorpi, E. Sievänen, E. Kolehmainen, V. Král, Molecules 12 (2007)
13.
9] P.P. Shao, D. Ok, M.H. Fisher, M.L. Garcia, G.J. Kaczorowski, C. Li, K.A. Lyons, W.J.
Martin, P.T. Meinke, B.T. Priest, M.M. Smith, M.J. Wyvratt, F. Ye, W.H. Parsons,
Bioorg. Med. Chem. Lett. 15 (2005) 1901.
[
10] T. Baumgartner, J. Inorg. Organomet. Polym. Mat. 15 (2005) 389.
Fig. 4. DSC scans of compounds 1–4 heated at a rate of 10 °C/min.
[11] COLLECT. Bruker AXS Inc., Madison, WI, 2004.
[
[
12] Z. Otwinowski, W. Minor, in: C.W. Carter Jr., R.M. Sweet (Eds.), Methods in
Enzymology (Macromolecular Crystallgraphy, Part A), vol. 276, Academic
Press, New York, 1997, p. 307.
13] M.C. Burla, M. Camalli, B. Carrozzini, G.L. Cascarano, C. Giacovazzo, G. Polidori,
J. Spagna, J. Appl. Cryst. 36 (2003) 1103.
3
.3. Differential scanning calorimetry
g
For the compounds 1–3 only glass transitions (T ) can be ob-
served on both consecutive heating scans, indicating that the mea-
sured samples were initially in amorphous/glassy state. More
[14] G.M. Sheldrick, SHELXL-97, University of Göttingen, Göttingen, Germany,
997.
1
[
[
15] L.J. Farrugia, J. Appl. Cryst. 30 (1997) 565.
16] C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M.
Towler, J. van de Streek, J. Appl. Cryst. 39 (2006) 453.
characteristic (free of the effects of solvent/moisture residues) T
values are been obtained from the second heating scans (Table
). Compound 4 is crystalline showing clear melting transition at
161 °C. On cooling, the sample enters to a glassy state, therefore
g
[
[
17] J.T. Tamminen, E.T. Kolehmainen, M.H. Haapala, H.T. Salo, J.M. Linnanto,
ARKIVOC (i) (2000) 80.
18] P.S. Pandey, R. Rai, R.B. Singh, J. Chem. Soc., Perkin Trans. 1 (2002) 918.
4
ꢁ
showing only a glass transition on second heating scan at ꢁ45 °C.
[19] J.R. Dias, H. Gao, E. Kolehmainen, Spectrochim. Acta A 56 (2000) 53.
[
20] a) A. Bax, R.H. Griffey, B.L. Hawkins, J. Magn. Reson. 55 (1983) 301;
b) A. Bax, S. Subramanian, J. Magn. Reson. 67 (1986) 565.
DSC curves for 1–4 are presented in Fig. 4.
[
21] A. Bax, M.F. Summers, J. Am. Chem. Soc. 108 (1986) 2093.
4
. Conclusions
[22] H.D. Flack, Acta Cryst. A39 (1983) 876.
[
23] a) K. Nakano, K. Sada, Y. Kurozumi, M. Miyata, Chem. Eur. J. 7 (2001) 209;
b) E. Giglio, C. Quagliata, Acta Cryst. B31 (1975) 743;
c) M. Alvarez, A. Jover, J. Carrazana, F. Meijide, V.H. Soto, J. Vázquez Tato,
Steroids 72 (2007) 535.
We have shown that lithocholyl and cholyl N-(2-amino-
ethyl)amides when reacted with various heteroaromatic carbalde-