F. Gao et al. / Tetrahedron Letters 50 (2009) 5270–5273
5273
greatly beneficial to the complicated natural product chemistry.
In addition, PtO2 and Et3N are commercially available, easy to han-
dle, and the products can be easily separated by filtration and
evaporation. An additionally attractive feature of this hydrogena-
tion is being applicable to the complicated molecules. Extension
of this work and investigation of its reaction mechanism are
currently in progress.
OH
OH
OCH3
OMs
OCH3
OMs
Ac2O/Pyr
NBS/HOAc
N
NH
H
H3CO
OH
40%
OH
O
85%
O
H
OCH3
OCH3
2b (95%)
H3CO
2a
OH
OH
OCH3
OMs
OCH3
OMs
Acknowledgment
O
O
H2 (1 atm)/PtO2/Et3
N
N
N
OH
95% EtOH/24h
yield 90%
OH
This research work was supported financially by the National
Science Foundation of China (No. 30672526).
O
HO
H
H
OCH3
OCH3
H3CO
H3CO
2c
2d
Supplementary data
Scheme 2. Preparation and hydrogenation of compound 2c.
Supplementary data associated with this article can be found, in
homogeneous catalysts.4 Despite the impressive development in the
field of the hydrogenation of activated ketones by supported plati-
num catalyst (usually Pt/Al2O3) modified with cinchona alkaloids,
the mechanistic details at the base of the reaction are still under
debate.12 Several models have been developed, and the conflicting
opinions reflect the great scientific interest of this topic.
References and notes
1. Wang, F. P.; Xu, L. Tetrahedron 2005, 61, 2149–2167.
2. Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth.
Catal. 2003, 345, 103–151.
3. (a) Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc.
1995, 117, 2675–2676; (b) Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1995, 117, 10417–10418; (c) Ohkuma, T.; Koizumi, M.; Doucet, H.;
Pham, T.; Kozawa, M.; Murata, K.; Katayama, E.; Yokozawa, T.; Ikariya, T.;
Noyori, R. J. Am. Chem. Soc. 1998, 120, 13529–13530; (d) Ohkuma, T.; Ishii, D.;
Takeno, H.; Ohkuma, R.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 6510–6511; (e)
Ohkuma, T.; Koizumi, M.; Muñiz, K.; Hilt, G.; Kabuto, C.; Noyori, R. J. Am. Chem.
Soc. 2002, 124, 6508–6509; (f) Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa,
T.; Kozawa, M.; Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R. Angew.
Chem., Int. Ed. 1998, 37, 1703–1707; (g) Noriyoshi, A.; Keita, A.; Noriyuki, N.;
Takeshi, O. Angew. Chem., Int. Ed. 2008, 47, 7321–7324.
4. Blaser, H.-U.; Studer, M. Acc. Chem. Res. 2007, 40, 1348–1356.
5. Studer, M.; Blaser, H. U.; Exner, C. Adv. Synth. Catal. 2003, 345, 45–65.
6. Vannice, M. A. Top. Catal. 1998, 4, 241–248.
7. Tang, L.-M.; Lu, Y.; Huang, M.-Y.; Jiang, Y.-Y. Polym. Adv. Tech. 1994, 5, 606–608.
8. Maity, P.; Basu, S.; Bhaduri, S.; Lahiri, G. K. J. Mol. Catal. A: Chem. 2007, 270, 117–
122.
It was demonstrated that the bifunctional M–H/N–H motif, a
hydride and amine cis-coordinated on the metal center, plays an
important role for the hydrogenation of ketones.3e,12–17 Similarly,
we presumed that PtO2/Et3N has the bifunctional Pt–H/N–H motif,
which could enhance the catalytic ability of Platinum based on the
following observations: (i) when triethylamine was replaced by
other bases, such as NaOH, diisopropylethylamine, pyridine, and
isobutylamine, the conversion rate of the hydrogenation was
significantly decreased; (ii) Benzophenone (a ketone that cannot
be enolized) can be hydrogenated in about 25% yield under the
aforementioned condition; and (iii) Benzaldehyde (an aldehyde
that cannot be enolized) was hydrogenated in the presence of
PtO2/Et3N in quantitative yield. In addition, it was reported that
the enol form can also be the reactive species in the hydrogenation
of the activated ketone on modified platinum.12 The triethylamine
might lead to the formation of a protonated amine-enolate salt of
ketones and aldehydes. Accordingly, we surmised that the hydro-
genation of ketones and aldehydes catalyzed by PtO2/Et3N might
experience the enol form intermediate alternatively. In this case,
the different stability of the enol might elucidate the ring size-
selectivity hydrogenation observed in our experiments because
the cyclic six-membered enols are most stable among the cyclic
enols.
9. Mitsui, S.; Saito, H.; Yamashita, Y.; Kaminaga, M.; Senda, Y. Tetrahedron 1973,
29, 1531–1539.
10. (a) Stead, D.; O’Brien, P. Tetrahedron 2007, 63, 1885–1897; (b) Shishido, K.;
Haruna, S.; Yamamura, C.; Iitsuka, H.; Nemoto, H.; Shinohara, Y.; Shibuy, M.
Bioorg. Med. Chem. Lett. 1997, 7, 2617–2622; (c) Fukuda, Y.; Itoh, Y.; Nakatani,
K.; Terashima, S. Tetrahedron 1994, 50, 2793–2808; (d) Keenan, R. M.; Miller,
W. H.; Barton, L. S.; Bondinell, W. E.; Cousins, R. D.; Eppley, D. F.; Hwang, S.-M.;
Kwon, C.; Lago, M. A.; Nguyen, T. T.; Smith, B. R.; Uzinskas, I. N.; Yuan, C. K.
Bioorg. Med. Chem. Lett. 1999, 9, 1801–1806.
11. Wang, F. P.; Fan, J. Z.; Li, Z. B.; Yang, J. S.; Li, B. G. Chin. Chem. Lett. 1999, 10, 375–
378.
12. Diezi, S.; Ferri, D.; Vargas, A.; Mallat, T.; Baiker, A. J. Am. Chem. Soc. 2006, 128,
4048–4057. and the references cited therein.
13. Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40–73.
14. Sandoval, C. A.; Ohkuma, T.; Muñiz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125,
13490–13503.
15. Abdur-Rashid, K.; Lough, A. J.; Morris, R. H. Organometallics 2000, 19, 2655–
2657.
16. Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Lough, A. J.; Morris, R. H. J. Am.
Chem. Soc. 2002, 124, 15104–15118.
17. Abbel, R.; Abdur-Rashid, K.; Faatz, M.; Hadzovic, A. A.; Lough, J.; Morris, R. H. J.
Am. Chem. Soc. 2005, 127, 1870–1882.
In summary, the first hydrogenation of aldehydes and chemose-
lective hydrogenation of cyclohexanones catalyzed by PtO2–Et3N
was presented. This novel method is quite general, and proceeds
efficiently at ambient temperature and under atmospheric H2
pressure. The aldehydes can be hydrogenated in high yields; and
cyclohexanones can be selectively reduced to the corresponding
alcohols in the presence of other cyclic ketones, which would be