C O M M U N I C A T I O N S
Table 4. [3 + 2] Reactions of 33 with Alkynes
Table 2. [3 + 2] Reactions of 1 with Substituted Arylacetylenes
entry
R, R
′
conditions
product
yieldb
entry
R
conditions
product
yieldb
1
2
3
4
5
p-OCH3, CH3 (13)
p-C(O)CH3, CH2OCH3 (15)
p-CF3, CH3(17)
o-F, CH3(19)
o-CH3, CH3(21)
2.5 h, 80 °C
5 h, 110 °C
6.5 h, 110 °C
20 h, 80 °C
5 h, 110 °C
14
16
18
20
22
94%
78%
91%
77%
98%
1c
2c
3d
Ph
CH3 (2)
C(O)CH3 (35)
17.5 h, 110 °C
7.5 h, 110 °C
5 h, 110 °C
3
34
36
57%
44%
61%
a Toluene (0.3 M). b Isolated yields. c 1.1 equiv 33; 1 mol % [RhCl(CO)2]2.
d 1.1 equiv 33; 5 mol % [RhCl(CO)2]2.
a Reaction run using 1.5 equiv 1, 1 mol % [RhCl(CO)2]2, toluene (0.3
M). b Isolated yields.
The functional group tolerance observed among alkynes and the
broad range of alkynes highlight important distinctions between
reactions of cyclopropenones and cyclopropenone ketals. This [3
+ 2] cycloaddition offers a unique and versatile route to a range
of CPDs and novel CPD-derived scaffolds, polycycles, and materi-
als. Further studies will be reported in due course.
Table 3. [3 + 2] Reactions of 1 with Other Alkynes
Acknowledgment. This work was funded by National Science
Foundation grant CHE-0450638.
Supporting Information Available: Experimental details and
characterization data for all cycloadducts, including X-ray information
for 3, 11a, and 16. This material is available free of charge via the
References
(1) Ogliaruso, M. A.; Romanelli, M. G.; Becker, E. I. Chem. ReV. 1965, 65,
261-367.
(2) (a) Fujita, M.; Sakanishi, Y.; Nishii, M.; Okuyama, T. J. Org. Chem. 2002,
67, 8138-8146. (b) Rainier, J. D.; Imbriglio, J. E. Org. Lett. 1999, 1,
2037-2039.
(3) (a) Gleiter, R.; Werz, D. B. Organometallics 2005, 24, 4316-4329. (b)
Shvo, Y.; Czarkie, D.; Rahamim, Y. J. Am. Chem. Soc. 1986, 108, 7400-
7402. (b) Casey, C. P.; Bikzhanova, G. A.; Guzei, I. A. J. Am. Chem.
Soc. 2006, 126, 2286-2293.
(4) Godschalx, J. P.; Romer, D. R.; So, Y. H.; Lysenko, Z.; Mills, M. E.;
Buske, G. R.; Townsend, P. H.; Smith, D. W.; Martin, S. J.; Devries, R.
A. U.S. Patent 5965679; 1997.
(5) Dorta, E.; Diaz-Marrero, A. R.; Cueto, M.; D’Croz, L.; Mate, J. L.; Darias,
J. Org. Lett. 2004, 6, 2229-2232.
(6) For lead references, see (a) Schuda, P. F.; Phillips, J. L.; Morgan, T. M.
J. Org. Chem. 1986, 51, 2742-2751. (b) Eaton, P. E.; Cole, T. W. J. Am.
Chem. Soc. 1964, 86, 962-964. (c) Maier, G.; Neudert, J.; Wolf, O.;
Pappusch, D.; Sekiguchi, A.; Tanaka, M.; Matsuo, T. J. Am. Chem. Soc.
2002, 124, 13819-13826.
(7) Ahn, J. H.; Shin, M. S.; Jung, S. H.; Kang, S. K.; Kim, K. R.; Rhee, S.
D.; Jung, W. H.; Yang, S. D.; Kim, S. J.; Woo, J. R.; Lee, J. H.; Cheon,
H. G.; Kim, S. S. J. Med. Chem. 2006, 49, 4781-4784.
(8) For examples and lead references, including work done by the groups of
Y. Tobe and K. Mu¨llen, see (a) Mihov, G.; Grebel-Koehler, D.; Lubbert,
A.; Vandermeulen, G. W. M.; Herrmann, A.; Klok, H.; Mullen, K.
Bioconjugate Chem. 2005, 16, 283-293. (b) Tobe, Y.; Kubota, K.;
Naeumura, K. J. Org. Chem. 1997, 62, 3430-3431.
a Reaction run using 1.5 equiv of 1, 1 mol % [RhCl(CO)2]2, toluene
(0.3 M). b Isolated yields. c [RhCl(CO)2]2, 3 mol %; benzyne is prepared
in situ from 1,2-diiodobenzene and zinc in ethanol (1.7 M).
2-4). It is noteworthy that ortho-substituted aryl alkynes (19 and
21, entries 4-5) are well tolerated.
Importantly, the reaction is not limited to aryl alkynes. Enynes,
heteroaryl alkynes, benzyne, and even 4-octyne all undergo selective
[3 + 2] cycloadditions (Table 3). For example, enyne 23 can be
converted to 24 in 88% yield (entry 1). Furan 25 and pyridine 27
both react to give CPDs 26 and 28, respectively (entries 2-3).
4-Octyne gives 30 in 65% yield, and benzyne (prepared from the
in situ reduction of 1,2-diiodobenzene, see Supporting Information)
reacts to provide indenone 32 in a 69% yield (entries 4-5).
The reaction also works with arylalkylcyclopropenones. For
example, methylphenylcyclopropenone (33), prepared in two steps
from 1-phenyl-2-butanone, reacts regioselectively with alkynes to
give the corresponding CPDs (Table 4). 33 reacts with diphenyl-
acetylene to give 3 in 57% yield (entry 1) and alkynes 2 and 35
react with 33 to give cycloadducts 34 and 36 in 44% and 61%
yields, respectively (entries 2-3).
(9) For lead references, see Harmata, M.; Gomes, M. G. Eur. J. Org. Chem.
2006, 2273-2277.
(10) (a) Allen, C. F. H.; VanAllan, J. A. J. Am. Chem. Soc. 1950, 72, 5165-
5167. (b) Van Ornum, S. G.; Li, J.; Kubiak, G. G.; Cook, J. M. J. Chem.
Soc., Perkin Trans. 1 1997, 3471-3478. (c) Walsh, C. J.; Mandal, B. K.
J. Org. Chem. 1999, 64, 6102-6105. (d) Moore, J. E.; York, M.; Harrity,
J. P. A. Synlett 2005, 860-862.
(11) For a review with leading references: Mu¨ller, E. Synthesis 1974, 761-
774.
(12) (a) Schrauzer, G. N. Chem. Ind. 1958, 1404. (b) Hu¨bel, W.; Braye, E. H.
J. Inorg. Nucl. Chem. 1959, 10, 250-268. (c) Boston, J. L.; Sharp, D.
W.; Wilkinson, G. J. Chem. Soc. 1962, 3488-3494. (d) Krespan, C. G.
J. Org. Chem. 1975, 40, 261-262. (e) King, R. B.; Harmon, C. A. Inorg.
Chem. 1976, 15, 879-885. (f) Gesing, E. R. F.; Tane, J. P.; Vollhardt, K.
P. C. Angew Chem., Int. Ed. 1980, 19, 1023-1024. (g) Ojima, I.; Kass,
D. F.; Zhu, J. Organometallics 1996, 15, 5191-5195. (h) Shibata, T.;
Yamashita, K.; Ishida, H.; Takagi, K. Org. Lett. 2001, 3, 1217-1219.
(13) Pearson, A. J.; Kim, J. B. Org. Lett. 2002, 4, 2837-2840.
(14) (a) Boger, D. L.; Brotherton, C. E. J. Am. Chem. Soc. 1986, 108, 6695-
6713. (b) Isobe, H.; Sato, S.; Tanaka, T.; Tokuyama, H.; Nakamura, E.
Org. Lett. 2004, 6, 3569-3571.
In summary, the Rh(I)-catalyzed [3 + 2] cycloaddition of
cyclopropenones and alkynes is shown to provide an efficient and
regioselective route to CPDs. Diaryl- and arylalkylcyclopropenones
can be used as the 3C component in combination with aryl-,
heteroaryl-, and dialkyl-substituted alkynes as 2C components
providing CPDs often in high yields and in multigram quantities.
(15) Schore, N. E. Org. React. 1991, 40, 1-90.
JA065868P
9
J. AM. CHEM. SOC. VOL. 128, NO. 46, 2006 14815