A. Fryszkowska et al. / Tetrahedron: Asymmetry 17 (2006) 961–966
965
nol (0.075 mmol, 7 lL) were added. The reaction was car-
ried out at room temperature and the reaction progress was
monitored by TLC (CHCl3/MeOH/HCOOH; 100:2:0.05).
The enantiomeric excess was determined by HPLC analysis
using Chiracel OD-H column. The enzyme quantities and
the results are summarized in Table 3.
(R) = 36.3 min] 1H NMR d 1.20 (t, J = 7.2 Hz, 3H),
2.70–2.90 (m, 4H), 3.53–3.73 (m, 1H), 3.83 (s, 3H), 4.09
(q, J = 7.2 Hz, 2H), 6.9 (d, J = 7.0 Hz, 2H), 7.19 (d,
J = 7.2 Hz, 2H); 13C NMR d 14.6, 37.3, 41.1, 41.3, 55.9,
60.9, 114.8, 129.4, 136.0, 159.4, 172.9, 174.8. Anal. Calcd
for C14H18O5: C, 63.15; H, 6.81. Found C, 63.12; H, 6.81.
4.1.4. Studies on re-circulation of Novozym 435. A general
procedure. To a suspension of anhydride 1a (0.5 mmol,
95 mg) in iso-propyl ether (10 mL), Novozym 435
(70 mg), and absolute ethanol (0.75 mmol, 75 lL) were
added. The reaction was carried out at room temperature
and the reaction progress monitored by TLC (CHCl3/
MeOH/HCOOH; 100:2:0.05). When the reaction reached
full conversion, the enzyme was filtered off, washed care-
fully with iso-propyl ether, and dried. The enzyme was
re-used for the next reaction with an appropriate amount
of the anhydride. The enantiomeric excess of product
(S)-2a was determined by HPLC analysis using Chiracel
OD-H column. The results are summarized in Table 4.
Chemical yields of all the reactions were nearly quantita-
tive (95–99%).
4.1.9. (S)-3-Phenylglutaric acid monopropyl ester (S)-
2e. White crystals: mp 32 ꢁC (Et2O/hexane); HPLC ana-
lysis: [hexane/i-PrOH/CH3COOH; 185:14:1; k = 226 nm;
1.0 mL/min; tR (S) = 7.7 min, tR (R) = 8.3 min]; 1H
NMR d 0.83 (t, J = 7.6 Hz, 3H), 1.42–1.63 (m, 2H),
2.54–2.85 (m, 4H), 3.52–3.72 (m, 1H), 3.92 (t, J = 6.6 Hz,
2H), 7.12–7.40 (m, 5H), 10.40 (s, 1H); 13C NMR d 10.6,
22.1, 38.3, 40.6, 40.9, 66.5, 127.3, 127.5, 128.9, 129.0,
142.6, 172.0, 177.9. Anal. Calcd for C14H18O4: C, 67.18;
H, 7.25. Found: C, 67.19; H, 7.24.
4.1.10. (S)-3-Phenylglutaric acid monobutyl ester (S)-
2f. White crystals: mp 41–43 ꢁC (Et2O/hexane); Rf =
0.39 (CHCl3/MeOH/HCOOH; 100:2:0.05); HPLC ana-
lysis: hexane/i-PrOH/CH3COOH; 185:14:1; k = 226 nm;
1.0 mL/min; tR (S) = 7.7 min, tR (R) = 8.2 min]. 1H
NMR d 0.91 (t, J = 7.2 Hz, 3H), 1.30 (q, J = 7.2 Hz,
2H), 1.46–1.56 (m, 2H), 2.68–2.79 (m, 4H), 3.62–3.70 (m,
1H), 4.01 (t, J = 6.5 Hz, 2H), 7.27–7.32 (m, 5H); 13C
NMR d 13.6, 19.0, 30.5, 38.0, 40.2, 40.6, 64.4, 127.0,
127.1, 127.3, 128.6, 128.7, 142.1, 171.6, 177.3. Anal. Calcd
for C15H20O4: C, 68.16; H, 7.63. Found: C, 67.75; H, 7.83;
ESI-MS HR, [M+Na]+, calcd for C15H20NaO4: 287.1254,
found (m/z): 287.1240 (100%).
4.1.5. (S)-3-Phenylglutaric acid monoethyl ester (S)-
2a. White crystals: mp 58–59 ꢁC ((Et2O/hexane; lit. 59–
6019); Rf = 0.24 (CHCl3/MeOH/HCOOH; 100:2:0.05);
HPLC analysis [hexane/i-PrOH/CH3COOH; 185:14:1;
k = 226 nm;
1.0 mL/min;
tR
(S) = 8.3 min,
tR
(R) = 8.9 min)]; 1H NMR d 1.85 (t, J = 7.1 Hz, 3H),
2.68–2.81 (m, 4H), 3.10–3.25 (m, 1H), 4.08 (q,
J = 7.1 Hz, 2H), 7.27–7.32 (m, 5H); 13C NMR d 14.0,
38.0, 40.2, 40.7, 60.5, 127.0, 127.2, 128.6, 128.7, 142.2,
171.6, 177.5; LSIMS (+, NBA): m/z = 259 ([M+Na]+,
56%), 237 ([M+H]+, 100%).
4.1.11. (S)-3-Phenylglutaric acid monobenzyl ester (S)-
2g. White crystals: mp 85–86 ꢁC (Et2O/hexane); Rf =
0.40 (CHCl3/MeOH/HCOOH; 100:2:0.05); HPLC ana-
lysis: [hexane/i-PrOH/CH3COOH; 185:14:1; k = 226 nm;
1.0 mL/min; tR (R) = 9.9 min, tR (S) = 10.9 min]; 1H
NMR d 2.18–2.32 (m, 4H), 3.70 (m, 1H), 5.06 (s, 2H),
7.15–7.40 (m, 10H); 13C NMR d 38.0, 40.2, 40.6, 66.5,
127.0, 127.2, 128.1, 128.5, 128.6, 135.6, 142.1, 171.3,
177.4. Anal. Calcd for C18H18O4: C, 72.47; H, 6.08. Found:
C, 72.39; H, 6.23.
4.1.6. (S)-3-(4-Chlorophenyl)-glutaric acid monoethyl ester
(S)-2b. White crystals: mp 56 ꢁC (Et2O/hexane); HPLC
analysis [hexane/i-PrOH/CH3COOH; 185:14:1; k = 226 nm;
1.0 mL/min; tR (S) = 9.0 min, tR (R) = 9.8 min]; 1H
NMR d 1.15 (t, J = 7.1 Hz, 3H), 2.67–2.80 (m, 4H),
3.50–3.70 (m, 1H), 4.03 (q, J = 7.1 Hz, 2H), 7.15 (d, J =
8.6 Hz, 2H), 7.34 (d, J = 8.6 Hz, 2H), 10.7 (s, 1H); 13C
NMR d 14.2, 37.3, 40.1, 40.5, 60.6, 128.6, 128.7, 128.8,
132.7, 140.6, 171.2, 177.2. Anal. Calcd for C13H15ClO4:
C, 57.68; H, 5.59. Found C, 57.59; H, 5.74.
Acknowledgment
4.1.7. (S)-3-(3,4-Dichlorophenyl)-glutaric acid monoethyl
ester (S)-2e. White crystals: mp 76–77 ꢁC (Et2O/hexane);
HPLC analysis [hexane/i-PrOH/CH3COOH; 198:1:1; k =
225 nm; 1.0 mL/min; tR (S) = 65.0 min, tR (R) = 69.8 min];
Rf = 0.16 (CHCl3/MeOH/HCOOH; 100:2:0.05); 1H
NMR d 1.20 (t, J = 7.1 Hz, 3H), 2.55–2.88 (m, 4H),
3.55–3.75 (m, 1H), 4.03 (q, J = 7.1 Hz, 2H), 7.13 (dd, J =
1.8 Hz, J = 8.2 Hz, 1H), 7.37–7.42 (m, 2H); 13C NMR d
14.1, 37.2, 40.3, 40.4, 60.8, 126.8, 129.3, 130.5, 130.9,
132.5, 142.5, 169.9, 177.0. Anal. Calcd for C13H14Cl2O4:
C, 51.17; H, 4.62. Found: C, 51.16; H, 4.78.
This work was supported by the Polish State Committee
for Scientific Research, grant PZB-MIN-007/P04/2003.
References
1. Willis, M. C. J. Chem. Soc., Perkin Trans. 1 1999, 1765–1784.
2. Lo, T.-L. Symmetry: A Basis for Synthesis Design; Wiley-
Interscience: New York, 1995; Chapter 1.3.
3. Garcia-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev. 2005,
105, 313–354.
4. Schoffers, E.; Golebiowski, A.; Johnson, C. R. Tetrahedron
1996, 52, 3769–3826.
4.1.8. (S)-3-(4-Methoxyphenyl)-glutaric acid monoethyl
ester (S)-2d. White crystals: mp 75–77 ꢁC (Et2O/hexane;
lit. 7822); HPLC analysis [hexane/i-PrOH/CH3COOH;
193:6:1; k = 226 nm; 0.7 mL/min; tR (S) = 33.3 min, tR
5. Drauz, H.; Waldman, M. Enzyme Catalysis in Organic
Synthesis; Wiley-VCH: Weinheim, 2002.
6. Fryszkowska, A.; Frelek, J.; Ostaszewski, R. Tetrahedron
2005, 61, 6064–6072.