pubs.acs.org/joc
5
sandramycin, and the anti-HIV cyclodepsipeptide homo-
Synthesis of Methyl N-Boc-(2S,4R)-4-methylpipecolate
6
phymia A. Pipecolic acid, 1, is also a synthetic precursor
to compounds including the amyloglucosidase inhibitor
Kuo-yuan Hung, Paul W. R. Harris, and
Margaret A. Brimble*
7
lentiginosine, and the anticonvulsant pipradol. Among the
8
9
vast variety of pipecolic acid derivatives described to date,
Department of Chemistry, The University of Auckland,
2
4-substituted pipecolic acids are currently the most prevalent
subgroup. Good examples are 4-hydroxy and 4-oxopipecolic
acid derivatives 2 and 3 that are present in the highly potent
3 Symonds Street, Auckland, New Zealand
1
0
Received October 17, 2010
HIV inhibitor palinavir, and the cyclic antibiotic virgini-
1
1
amycin S, respectively. While numerous syntheses of both
-hydroxy and 4-oxopipecolic acid have been reported, little
attention has focused on the formation of the less known
4
4-methylpipecolic acid, 4, the key component of the potent
and selective thrombin inhibitor argatroban, 5.
12
An efficient stereoselective synthesis of fully protected
2S,4R)-4-methylpipecolic acid has been developed. The
(
Despite several racemic syntheses of 4-methylpipecolic
1
synthesis was achieved by initial asymmetric R-alkylation
of glycine with a chiral iodide, affording the linear pre-
cursor as a single stereoisomer. Subsequent aldehyde
formation using OsO /NaIO followed by immediate intra-
3
acid, only a limited number of asymmetric syntheses have
been described. Asymmetric synthesis of 4-methylpipecolic
14
acid has been accomplished by aza-Diels-Alder reaction,
intramolecular ene-iminium cyclization, and Sharpless
4
4
15
molecular cyclization afforded an enamine that was then
subjected to hydrogenation to give the final compound in
16
epoxidation followed by ring-closing metathesis. Dis-
appointingly, most of these methods proceed with low overall
stereoselectivity. Given that the chirality at both the 2- and
23% yield over 10 steps.
(7) Pastuszak, I.; Molyneux, R. J.; James, L. F.; Elbein, A. D. Biochemistry
1
990, 29, 1886–1891.
(8) Portoghese, P. S.; Pazdernik, T. L.; Kuhn, W. L.; Hite, G.; Shafi’ee, A.
Pipecolic acid 1 is a cyclic nonproteogenic R-amino acid
found in plants, fungi, and human physiological fluids. As a
1
J. Med. Chem. 1968, 11, 12–15.
9) Kadouri-Puchot, C.; Comess, S. Amino Acids 2005, 29, 101–130.
(10) (a) Lamarre, D.; Croteau, G.; Wardrop, E.; Bourgon, L.; Thibeault,
D.; Clouette, C.; Vaillancourt, M.; Cohen, E.; Pargellis, C.; Yoakim,
C.; Anderson, P. C. Antimicrob. Agents Chemother. 1997, 41, 965–971.
(
2
metabolite of L-lysine, this naturally occurring homologue
of L-proline is an important component in pharmaco-
logically active compounds such as the immunosuppressive
(
b) Beaulieu, P. L.; Lavall ꢀe e, P.; Abraham, A.; Anderson, P. C.; Boucher,
3
agents rapamycin and FK506, the antitumor antibiotic
4
C.; Bousquet, Y.; Duceppe, J.; Gillard, J.; Gorys, V.; Grand-Maıtre, C.;
ˆ
Grenier, L.; Guindon, Y.; Guse, I.; Plamondon, L.; Soucy, F.; Valois, S.;
Wernic, D.; Yoakim, C. J. Org. Chem. 1997, 62, 3440–3448.
(11) Vanderhaeghe, H.; Janssen, G.; Compernolle, F. Tetrahedron Lett.
1971, 28, 2687–2688.
(12) (a) Okamoto, S.; Hijikata, A.; Kikumoto, R.; Tonomura, S.;
Hara, H.; Ninomiya, K.; Maruyama, A.; Sugano, M.; Tamao, Y. Biochem.
Biophys. Res. Commun. 1981, 101, 440–446. (b) Kikumoto, R.; Tamao, Y.;
Tezuka, T.; Tonomura, S.; Hara, H.; Ninomiya, K.; Hijikata, A.; Okamoto,
S. Biochemistry 1984, 23, 85–90. (c) Hilpert, K.; Ackermann, J.; Banner,
D. W.; Gast, A.; Gubernator, K.; Hadvary, P.; Labler, L.; M u€ ller, K.;
Schmid, G.; Tschopp, T. B.; van de Waterbeemd, H. J. Med. Chem. 1994, 37,
3889–3901.
(13) (a) Caddy, D. E.; Utley, J. H. P. J. Chem. Soc., Perkin Trans. 2 1973,
1258–1262. (b) Schuman, R. T.; Ornstein, P. L.; Paschal, J. W.; Gesellchen,
P. D. J. Org. Chem. 1990, 55, 738–741. (c) Nazih, A.; Schneider, M. R.;
Mann, A. Synlett 1998, 1337–1338. (d) Hu, L. Y.; Ryder, T. R.; Nikam, S. S.;
Millerman, E.; Szoke, B. G.; Rafferty, M. F. Bioorg. Med. Chem. Lett. 1999,
9, 1121–1126. (e) Cossy, J.; Belotti, D. Tetrahedron Lett. 2001, 42, 2119–2120.
(14) (a) Bailey, P. D.; Wilson, R. D.; Brown, G. R. J. Chem. Soc., Perkin
Trans. 1 1991, 1337–1340. (b) Bailey, P. D.; Brown, G. R.; Korber, F.; Reed,
A.; Wilson, R. D. Tetrahedron: Asym. 1991, 2, 1263–1282.
(
1) (a) Zacharius, R. M.; Thompson, J. F.; Steward, F. C. J. Am. Chem.
Soc. 1952, 74, 2949. (b) Bernasconi, R.; Jones, R. S. G.; Bittiger, H.; Olpe,
H. R.; Heid, J.; Martin, P.; Klein, M.; Loo, P.; Braunwalder, A.; Schmutz, M.
J. Neural Transm. 1986, 67, 175–189. (c) Gutierrez, M. C.; Delgado-Coello,
B. A. Neurochem. Res. 1989, 14, 405–408.
(
2) Leistner, E.; Spenser, I. D. J. Am. Chem. Soc. 1973, 95, 4715–4725.
3) (a) Swindells, D. C. N.; White, P. S.; Findlay, J. A. Can. J. Chem. 1978,
(
6, 2491–2492. (b) Smith, A. B., III; Hale, K. J.; Laakso, L. M.; Chen,
K.; Riera, A. Tetrahedron Lett. 1989, 30, 6963–6966. (c) Smith, A. B., III;
Condon, S. M.; McCauley, J. A.; Leazer, J. L.; Leahy, J. W.; Maleczka, R. E.
J. Am. Chem. Soc. 1997, 119, 962–973. (d) Smith, A. B., III; Adams, C. M.
Acc. Chem. Res. 2004, 37, 365–377.
5
(
4) (a) Tanaka, H.; Kuroda, A.; Marusawa, H.; Hatanaka, H.; Kino, T.;
Goto, T.; Hashimoto, M.; Taga, T. J. Am. Chem. Soc. 1987, 109, 5031–5033.
b) Romo, D.; Meyer, S. D.; Johnson, D. D.; Schreiber, S. L. J. Am. Chem.
(
Soc. 1993, 115, 7906–7907. (c) Ireland, R. E.; Gleason, J. L.; Gegnas, L. D.;
Highsmith, T. K. A. J. Org. Chem. 1996, 61, 6856–6872.
(
5) Boger, D. L.; Chen, J. H.; Saionz, K. W. J. Am. Chem. Soc. 1996, 118,
629–1644.
6) Zampella, A.; Sepe, V.; Luciano, P.; Bellotta, F.; Monti, M. C.;
1
(
(15) Agami, C.; Bisaro, F.; Comesse, S.; Guesne, S.; Kadouri-Puchot, C.;
Morgentin, R. Eur. J. Org. Chem. 2001, 2385–2389.
(16) Alegret, C.; Santacana, F.; Riera, A. J. Org. Chem. 2007, 72, 7688–
7692.
D’Auria, M. V.; Jepsen, T.; Petek, S.; Adeline, M.-T.; Lapr ꢀe v o^ te, O.;
Aubertin, A.-M.; Debitus, C.; Poupat, C.; Ahond, A. J. Org. Chem. 2008,
3, 5319–5327.
7
8
728 J. Org. Chem. 2010, 75, 8728–8731
Published on Web 11/23/2010
DOI: 10.1021/jo102038q
r 2010 American Chemical Society