C O M M U N I C A T I O N S
chirality of the twisted C12-PEPAu nanoribbons. The measured
maximum inner-distance between the particles along the width of
the double helix is 6.0 ( 0.8 nm, and the pitch of the double helix
is 83.2 ( 4.4 nm (Figure S11). Both distances are consistent with
the observed width and pitch of the twisted C12-PEPAu nanoribbons.
These observations all indicate that the synthesis of the nanoparticles
and the assembly of the nanoribbons are coupled and that the
peptide-conjugates successfully control the formation of gold
nanoparticle double helices (Figure 3c). The results of control
experiments help verify this conclusion. When identical syntheses
tion. They are grateful to the various support services provided by
the University of Pittsburgh’s Department of Chemistry, including
the glass shop, machine shop, and electronics shop. They also
acknowledge Dr. David Earl, Daniel Lamont, and Dr. Joel Gillespie
for fruitful discussions.
Supporting Information Available: Experimental procedures,
Figures S1-14, and additional supporting data. This material is
References
were performed using unmodified PEPAu instead of C12-PEPAu
,
(1) Alivisatos, A. P. Science 1996, 271, 933–937.
dispersed nanoparticles formed (Figure S12), similar to those
reported in the literature.26 Further, to assess the importance of the
internal amino acids (AYSS) for directing the assembly of the
nanoribbons,34 we attempted to assemble nanoribbons and synthe-
size the gold nanoparticle double helices using an amphiphile
(2) Maier, S. A.; Atwater, H. A. J. Appl. Phys. 2005, 98, 0111010.
(3) Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop,
K. J. M.; Grzybowski, B. A. Science 2006, 312, 420–424.
(4) Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chem. ReV. 2005,
105, 1025–1102.
(5) Tang, Z. Y.; Kotov, N. A. AdV. Mater. 2005, 17, 951–962.
(6) Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O’Brien, S.; Murray,
C. B. Nature 2006, 439, 55–59.
constructed
from
the
reverse
peptide
sequence
(7) Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.;
Mirkin, C. A. Nature 2008, 451, 553–556.
(C12-FPPMPPAGSSYA). Nanoribbons do not form using this
amphiphile nor do gold nanoparticle double helices; rather, random
gold aggregates are the principle product (Figure S13). Finally, to
determine whether the C12-PEPAu nanoribbons could template the
assembly of preformed gold nanoparticles, we added citrate-
stabilized nanoparticles to HEPES solutions containing C12-PEPAu
nanoribbons. In this case, no ordered particle assemblies were
observed (Figure S14).
(8) Nykypanchuk, D.; Maye, M. M.; van der Lelie, D.; Gang, O. Nature 2008,
451, 549–552.
(9) Zhuang, J. Q.; Wu, H. M.; Yang, Y. A.; Cao, Y. C. J. Am. Chem. Soc.
2007, 129, 14166–14167.
(10) Novak, J. P.; Feldheim, D. L. J. Am. Chem. Soc. 2000, 122, 3979–3980.
(11) Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.;
Rotello, V. M. Nature 2000, 404, 746–748.
(12) Le, J. D.; Pinto, Y.; Seeman, N. C.; Musier-Forsyth, K.; Taton, T. A.; Kiehl,
R. A. Nano Lett. 2004, 4, 2343–2347.
(13) Li, M.; Schnablegger, H.; Mann, S. Nature 1999, 402, 393–395.
(14) Alivisatos, A. P.; Johnsson, K. P.; Peng, X. G.; Wilson, T. E.; Loweth,
C. J.; Bruchez, M. P.; Schultz, P. G. Nature 1996, 382, 609–611.
(15) Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem.
Soc. 2003, 125, 13914–13915.
(16) Zubarev, E. R.; Xu, J.; Sayyad, A.; Gibson, J. D. J. Am. Chem. Soc. 2006,
128, 15098–15099.
(17) Xu, X. Y.; Rosi, N. L.; Wang, Y. H.; Huo, F. W.; Mirkin, C. A. J. Am.
Chem. Soc. 2006, 128, 9286–9287.
(18) DeVries, G. A.; Brunnbauer, M.; Hu, Y.; Jackson, A. M.; Long, B.; Neltner,
B. T.; Uzun, O.; Wunsch, B. H.; Stellacci, F. Science 2007, 315, 358–361.
(19) Ryadnov, M. G.; Ceyhan, B.; Niemeyer, C. M.; Woolfson, D. N. J. Am.
Chem. Soc. 2003, 125, 9388–9394.
(20) Stevens, M. M.; Flynn, N. T.; Wang, C.; Tirrell, D. A.; Langer, R. AdV.
Mater. 2004, 16, 915–918.
(21) Ulijn, R. V.; Smith, A. M. Chem. Soc. ReV. 2008, 37, 664–675.
(22) Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.; McLeish,
T. C. B.; Semenov, A. N.; Boden, N. Proc. Natl. Acad. Sci. U.S.A. 2001,
98, 11857–11862.
(23) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684–1688.
(24) Zhang, S. G. Nat. Biotechnol. 2003, 21, 1171–1178.
(25) Whaley, S. R.; English, D. S.; Hu, E. L.; Barbara, P. F.; Belcher, A. M.
Nature 2000, 405, 665–668.
The formation of left-handed gold nanoparticle double helices
in a single preparative step exemplifies the utility and power of
this methodology. The gold nanoparticles comprising the double
helices are monodisperse, with diameters of 8.2 ( 1.0 nm (Figure
2e), which suggests a uniform growth process from initial seeding
to termination. In addition, the double helices are highly regular:
there are approximately 22 nanoparticles per pitch distance (Figure
S11), the edge-to-edge spacing between the nanoparticles is uniform
(1.5 ( 0.8 nm; Figure S11), and the length of individual helices
extends into the micrometer range. Such structural uniformity is
unique, and it will be important for many potential applications,
especially those that derive from the plasmonic properties of the
nanoparticles.2,5,39 Finally, we note that spatially complex nano-
particle superstructures exhibiting well-defined stereochemistry,
order, and persistence over multiple length scales are very rare,
and to our knowledge, rational synthetic methods that allow for
their fabrication are equally scarce. We are currently expanding
the scope of this methodology by targeting various nanoparticle
superstructures via variation of the pendant organic group and by
tuning the inorganic composition of the assemblies via selection
of particular peptides. Ultimately, we expect that this method will
be useful for designing and producing many other target nanopar-
ticle superstructures having properties that depend on both the
composition of the organic and inorganic components and their
arrangement with respect to one another within the assembled
structure.
(26) Slocik, J. M.; Stone, M. O.; Naik, R. R. Small 2005, 1, 1048–1052.
(27) Tomczak, M. M.; Slocik, J. M.; Stone, M. O.; Naik, R. R. MRS Bull. 2008,
33, 519–523.
(28) Sarikaya, M.; Tamerler, C.; Jen, A. K. Y.; Schulten, K.; Baneyx, F. Nat.
Mater. 2003, 2, 577–585.
(29) Evans, J. S.; Samudrala, R.; Walsh, T. R.; Oren, E. E.; Tamerler, C. MRS
Bull. 2008, 33, 514–518.
(30) Slocik, J. M.; Zabinski, J. S.; Phillips, D. M.; Naik, R. R. Small 2008, 4,
548–551.
(31) Si, S.; Bhattacharjee, R. R.; Banerjee, A.; Mandal, T. K. Chem.sEur. J.
2006, 12, 1256–1265.
(32) Habib, A.; Tabata, M.; Wu, Y. G. Bull. Chem. Soc. Jpn. 2005, 78, 262–
269.
(33) Xie, J. P.; Lee, J. Y.; Wang, D. I. C. Chem. Mater. 2007, 19, 2823–2830.
(34) Paramonov, S. E.; Jun, H. W.; Hartgerink, J. D. J. Am. Chem. Soc. 2006,
128, 7291–7298.
(35) Surewicz, W. K.; Mantsch, H. H.; Chapman, D. Biochemistry 1993, 32,
389–394.
(36) Georget, D. M. R.; Belton, P. S. Biomacromolecules 2006, 7, 469–475.
(37) Helmy, R.; Fadeev, A. Y. Langmuir 2002, 18, 8924–8928.
(38) Minor, D. L.; Kim, P. S. Nature 1994, 367, 660–663.
(39) Chen, Y.; Munechika, K.; Ginger, D. S. MRS Bull. 2008, 33, 536–542.
Acknowledgment. Funding for this work was provided by the
University of Pittsburgh. The authors thank the Department of
Mechanical Engineering and Materials Science for access to electron
microscopy instrumentation and the Petersen Institute for Nano-
science and Engineering (PINSE) for access to AFM instrumenta-
JA805683R
9
J. AM. CHEM. SOC. VOL. 130, NO. 41, 2008 13557