Chemistry - A European Journal
10.1002/chem.201902303
RESEARCH ARTICLE
The data were scaled and equivalent reflections were merged with
SADABS[37] (version 2016/2). An empirical absorption correction for a
Struct. Bond. 2012, 146, 1; c) D. Stalke, Struct. Bond., 2016, 169,
57; d) P. Coppens, Angew. Chem., Int. Ed. 2005, 44, 6810; e) C.
Gatti, Z. Kristallogr. 2005, 220, 399; f) A. Genoni, L. Bučinský, N.
Claiser, J. Contreras-García, B. Dittrich, P. M. Dominiak, E.
Espinosa, C. Gatti, P. Giannozzi, J.-M. Gillet et al., Chem. Eur. J.
strong absorber was also performed with SADABS. Afterwards the
structure was solved with SHELXT[38] using the direct methods and refined
by full-matrix least square against F using SHELXL[39] (version 2018/1) by
means of the graphical user interface SHELXle[40]. Topological analysis
according to the Quantum Theory of Atoms in Molecules[12] (QTAIM) was
performed using the XDPROP and TOPXD programs included in the XD
package. Crystallographic details are provided in Table S1-1.
2
2018, 24, 10881; g) D. Stalke, Chem. Eur. J. 2011, 17, 9264.
[4]
[5]
L. Pauling, J. Am. Chem. Soc. 1932, 54, 988.
A. Aaddane, M. Kacimi, M. Ziyad, Catal. Lett. 2001, 73, 47.
A. G. Nord, D. P. Novak, A. Borgan, T. Østvold, A. Bjørseth, D. L.
Powell, Acta Chem. Scand. 1974, 28a, 150.
J. B. Anderson, E. Kostiner, M. C. Miller, J. R. Rea, J. Solid. State.
Chem. 1975, 14, 372.
G. Berthet, J. C. Joubert, E. F. Bertaut, Z. Kristallogr. 1972, 136,
98.
A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor,
J. Chem. Soc., Dalton Trans. 1984, 1349.
[
[
[
6]
7]
8]
DFT calculations. Periodic DFT calculations were performed on the
experimentally obtained Co
program package version 17.1.[41] The composition of the conventional unit
cell is Co (PO . Spin-polarized calculations were performed using the
PBE+U functional (Ueff = U − J = 3 eV). The value of Ueff was chosen on
3 4 2
(PO ) crystal structure using the WIEN2k
6
)
4 4
[9]
[
42]
[10] a) F. Machatschki, Monatsh. Chem. 1947, 77, 333; b) J. Lima-de-
Faria, E. Hellner, F. Liebau, E. Makovicky, E. Parthé, Acta
Crystallogr. A 1990, 46, 1.
11] N. K. Hansen, P. Coppens, Acta Crystallogr. B 1978, 34, 909.
[12] R. F. W. Bader, Atoms in Molecules. A Quantum Theory,
Clarendon Press, Oxford, New York, 1990.
the basis of previous studies for cobalt oxides and hydroxides. Although
the value of Ueff affects the calculated (one-electron) band gap and dd
transition level, we have verified that other choices (Ueff = 1 eV, Ueff = 4 eV)
do not affect the qualitative results of this study, in particular as pertains to
the shape and orientation of the maximally localized Wannier functions[43]
[
(
MLWFs). The calculations were performed using the linearized
[13] W. Jones, March, Norman, Henry, Theoretical Solid State Physics.
Volume 1: Perfect Lattices in Equilibrium, Dover Publications Inc.,
New York, 1985.
augmented plane wave (LAPW) method with RKmax = 8.5. The Brillouin
zone was sampled with a 19 × 11 × 13 k-point grid, corresponding to 744
irreducible k-points; the total energy was then converged within 3 meV as
compared to a 9 × 5 × 6 k-point grid. The lowest-energy structure was
found when all Co ions were in high-spin configurations. We do not
consider any magnetic ordering or relative alignment of spins, since the
experiments in the current study were conducted at T = 100 K where the
compound is paramagnetic. MLWFs were calculated using the WIEN2k
Wannier interface to the wannier90 program[44] (i) by projecting the 12
highest occupied spin-down bands (two occupied bands per Co ion) onto
the Co d orbitals, and (ii) by projecting the highest 62 occupied spin-up
bands onto the 30 Co d orbitals in the conventional unit cell. We attempted
several different rotations for the initial projections, but found that all of
them converged to the same final result. The MLWFs were plotted using
VMD.[45] The X-ray structure factors used as input for the multipole model
were calculated for reflections up to sin θ/λ < 1.61 Å−1 using the WIEN2k
lapw3 program. We also performed periodic surface DFT calculations
[
14] J. A. Dobado, H. Martínez-García, Molina, M. R. Sundberg, J. Am.
Chem. Soc. 1998, 120, 8461.
[
15] D. Leusser, J. Henn, N. Kocher, B. Engels, D. Stalke, J. Am.
Chem. Soc. 2004, 126, 1781.
[16] a) M. C. Durrant, Chem. Sci. 2015, 6, 6614; b) R. D. Harcourt, T.
M. Klapötke, Chem. Sci. 2016, 7, 3443; c) M. C. Durrant, Chem.
Sci. 2016, 7, 3448.
[
17] M. S. Schmøkel, S. Cenedese, J. Overgaard, M. R. V. Jørgensen,
Y.-S. Chen, C. Gatti, D. Stalke, B. B. Iversen, Inorg. Chem. 2012,
51, 8607.
[18] M. Fugel, L. A. Malaspina, R. Pal, S. P. Thomas, M. W. Shi, M. A.
Spackman, K. Sugimoto, S. Grabowsky, Chem. Eur. J. 2019, 25,
6523.
[
[
19] D. Cremer, E. Kraka, Croat. Chem. Acta 1984, 57, 1259.
20] E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys. 2002,
117, 5529.
[
21] R. J. Gillespie, I. Hargittai, The VSEPR model of molecular
geometry, Allyn and Bacon, Boston, London, 1991.
using Quantum ESPRESSO[46], and molecular DFT calculations using
ADF[47]. The details of those calculations are given in the SI.
[22] L. Krause, B. Niepötter, C. J. Schürmann, D. Stalke, R. Herbst-
Irmer, IUCrJ 2017, 4, 420.
[
23] a) G. V. Gibbs, M. A. Spackman, D. Jayatilaka, K. M. Rosso, D. F.
Cox, J. Phys. Chem. A 2006, 110, 12259; b) G. V. Gibbs, R. T.
Downs, D. F. Cox, K. M. Rosso, N. L. Ross, A. Kirfel, T. Lippmann,
W. Morgenroth, T. D. Crawford, J. Phys. Chem. A 2008, 112, 8811.
24] A. Schmidt, Dissertation, Justus-Liebig-Universität Gießen, Gießen,
Acknowledgements
[
All authors thank Dr. F. Güthoff and P. Kirscht from the group of
Prof. Dr. G. Eckold for input on crystallization. D. S. thanks the
Danish National Research Foundation (DNRF93) funded Center
for Materials Crystallography (CMC) for partial support. D. S. and
J. B. thank the Deutsche Forschungsgemeinschaft for funding
2
002.
[25] K. C. Mondal, P. P. Samuel, H. W. Roesky, E. Carl, R. Herbst-
Irmer, D. Stalke, B. Schwederski, W. Kaim, L. Ungur, L. F.
Chibotaru et al., J. Am. Chem. Soc. 2014, 136, 1770.
[
26] S. R. Madsen, M. K. Thomsen, S. Scheins, Y.-S. Chen, N.
Finkelmeier, D. Stalke, J. Overgaard, B. B. Iversen, Dalton Trans.
2014, 43, 1313.
(
389479699 / GRK2455). J. B. is grateful for a DFG Heisenberg
[
[
27] D. Gao, Q. Gao, Microporous Mesoporous Mat. 2005, 85, 365.
28] T. K. Ghorai, D. Dhak, A. Azizan, P. Pramanik, Mater. Sci. Eng. B
2005, 121, 216.
professorship (329898176 / Be3264/11-2). M. H. acknowledges
funding from the European Union's Horizon 2020 research and
innovation programme under grant agreement No 798129.
[
29] a) A. Legrouri, J. Lenzi, M. Lenzi, React. Kinet. Catal. Lett. 1997,
62, 313; b) A. Legrouri, J. Lenzi, M. Lenzi, React. Kinet. Catal. Lett.
1998, 65, 227.
[
[
30] H. S. Taylor, Proc. Math. Phys. Eng. Sci. A 1925, 108, 105.
31] Y. Sohtome, G. Nakamura, A. Muranaka, D. Hashizume, S.
Lectard, T. Tsuchimoto, M. Uchiyama, M. Sodeoka, Nature
Commun. 2017, 8, 14875.
Keywords: charge density investigation • Cobalt phosphate •
density of states • solid-state catalysis
[
[
[
32] J. A. Mata, F. E. Hahn, E. Peris, Chem. Sci. 2014, 5, 1723.
33] J. D. H. Donnay, D. Harker, Am. Mineral 1937, 22, 446.
34] T. Schulz, K. Meindl, D. Leusser, D. Stern, J. Graf, C. Michaelsen,
M. Ruf, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr. 2009, 42,
[
1]
a) B. Cornils, W. A. Herrmann, Applied Homogenous Catalysis with
Organometallic Compounds, VCH, Weinheim, 1996; b) P.
Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann,
Chem. Rev. 2019, 119, 2192; c) S. Santoro, S. I. Kozhushkov, L.
Ackermann, L. Vaccaro, Green Chem. 2016, 18, 3471.
W. Reschetilowski, Einführung in die Heterogene Katalyse,
Springer Spektrum, Berlin, 2015.
8
85.
35] Bruker SAINT v8.30C. Bruker AXS Inst. Inc., WI, USA, Madison,
013.
36] Bruker APEX v2011.4-1. Bruker AXS Inst. Inc., WI, USA, Madison,
011.
[
[
[
[
2]
3]
2
a) C. Gatti, P. Macchi, Modern Charge Density Analysis, Springer,
Heidelberg, London, New York, 2012; b) U. Flierler, D. Stalke,
2
This article is protected by copyright. All rights reserved.