66
J. He et al. / Journal of Catalysis 299 (2013) 53–66
[12] V. Duma, D. Hönicke, J. Catal. 191 (2000) 93–104.
[13] E. Ananieva, A. Reitzmann, Chem. Eng. Sci. 59 (2004) 5509–5517.
[14] X. Wang, Q. Zhang, Q. Guo, Y. Lou, L. Yang, Y. Wang, Chem. Commun. (2004)
1396–1397.
[15] X. Wang, Q. Zhang, S. Yang, Y. Wang, J. Phys. Chem. B 109 (2005) 23500–23508.
[16] Q. Zhang, Q. Guo, X. Wang, T. Shishido, Y. Wang, J. Catal. 239 (2006) 105–113.
[17] B. Moens, H.D. Winne, S. Corthals, H. Poelman, R. De Gryse, V. Meynen, P. Cool,
B.F. Sels, P.A. Jacobs, J. Catal. 247 (2007) 86–100.
[18] S. Yang, W. Zhu, Q. Zhang, Y. Wang, J. Catal. 254 (2008) 251–262.
[19] J. Lu, J.J. Bravo-Suárez, A. Takahashi, M. Haruta, S.T. Oyama, J. Catal. 232 (2005)
85–95.
[20] J. Lu, J.J. Bravo-Suárez, M. Haruta, S.T. Oyama, Appl. Catal. A 302 (2006) 283–
295.
[21] Y. Lei, F. Mehmood, S. Lee, J. Greeley, B. Lee, S. Seifert, R.E. Winsns, J.W. Elam,
R.J. Meyer, P.C. Redfern, D. Teschner, R. Schlögl, M.J. Pellin, L.A. Curtiss, S. Vajda,
Science 328 (2010) 224–228.
[22] M. Ojeda, E. Iglesia, Chem. Commun. (2009) 352–354.
[23] S. Lee, L.M. Molina, M.J. López, J.A. Alonso, B. Hammer, B. Lee, S. Seifert, R.E.
Winans, J.W. Elam, M.J. Pellin, S. Vajda, Angew. Chem. Int. Ed. 48 (2009) 1467–
1471.
[24] J. Huang, T. Akita, J. Fays, T. Fujitani, T. Takei, M. Haruta, Angew. Chem. Int. Ed.
48 (2009) 7862–7866.
[25] R.M. Lambert, F.J. Williams, R.L. Cropley, A. Palermo, J. Mol. Catal. A 228 (2005)
27–33.
[26] R.L. Cropley, F.J. Williams, A.J. Urquhart, O.P.H. Vaughan, M.S. Tikhov, R.M.
Lambert, J. Am. Chem. Soc. 127 (2005) 6069–6076.
[27] D. Torres, N. Lopez, F. Illas, R.M. Lambert, Angew. Chem. Int. Ed. 46 (2007)
2055–2058.
[28] J.R. Monnier, G.W. Hartley, J. Catal. 203 (2001) 253–256.
[29] J. Lu, M. Luo, H. Lei, X. Bao, C. Li, J. Catal. 211 (2002) 552–555.
[30] O.P.H. Vaughan, G. Kyriakou, N. Macleod, M. Tikhov, R.M. Lambert, J. Catal. 236
(2005) 401–404.
[31] X. Zhang, Q. Zhang, Y. Guo, W. Zhan, Y. Guo, Y. Wang, G. Lu, J. Mol. Catal. A 357
(2012) 106–111.
[32] H. Chu, L. Yang, Q. Zhang, Y. Wang, J. Catal. 241 (2006) 225–228.
[33] Y. Wang, H. Chu, W. Zhu, Q. Zhang, Catal. Today 131 (2008) 496–504.
[34] W. Zhu, Q. Zhang, Y. Wang, J. Phys. Chem. C 112 (2008) 7731–7734.
[35] W. Su, S. Wang, P. Ying, Z. Feng, C. Li, J. Catal. 268 (2009) 165–174.
[36] I. Onal, D. Düzenli, A. Seubsai, M. Kahn, E. Seker, S. Senkan, Top. Catal. 53
(2010) 92–99.
[37] L. Yang, J. He, Q. Zhang, Y. Wang, J. Catal. 276 (2010) 76–84.
[38] S. Seubsai, M. Kahn, S. Senkan, ChemCatChem 3 (2011) 174–179.
[39] A. Seubsai, S. Senkan, ChemCatChem 3 (2011) 1751–1754.
[40] W. Long, Q. Zhai, J. He, Q. Zhang, W. Deng, Y. Wang, ChemPlusChem 77 (2012)
27–30.
[41] H.H. Voge, C.R. Adams, Adv. Catal. 17 (1967) 151–221.
[42] B.J. Wood, H. Wise, R.S. Yolles, J. Catal. 15 (1969) 355–362.
[43] T. Inui, T. Ueda, M. Suehiro, J. Catal. 65 (1980) 166–173.
[44] J.B. Reitz, E.D. Solomon, J. Am. Chem. Soc. 120 (1998) 11467–11478.
[45] S. Sato, R. Takahashi, T. Sodesawa, K. Yuma, Y. Obata, J. Catal. 196 (2000) 195–
199.
creased the selectivity and yield to PO in the oxidation of C3H6 by
O2, although the conversion of C3H6 decreased to some extent. The
Cs+–5 wt% CuOx/SiO2 catalyst exhibited the highest PO selectivity
and PO yield among a series of alkali-metal-ion-modified CuOx/
SiO2 catalysts. Our characterizations showed that the modification
by an alkali metal ion decreased the size of CuOx nanoparticles,
suggesting the existence of strong interactions between CuOx and
alkali metal ions. Such interactions were strongest between CuOx
and Cs+. The presence of Cs+ or another alkali metal ion decreased
the acidity arising from CuOx species and suppressed the reducibil-
ity of the catalyst. The kinetic studies clarified that acrolein and PO
were formed in parallel as primary products via allylic oxidation
and epoxidation routes over the catalysts with and without Cs+
modification. PO underwent isomerization into allyl alcohol and
further oxidation into acrolein over the 5 wt% CuOx/SiO2 catalyst
without Cs+ modification. The modification by Cs+ inhibited the
consecutive conversion of PO by decreasing the acidity. We con-
firmed via pulse-reaction studies that the lattice oxygen species
was responsible for the allylic oxidation of C3H6 to acrolein. The
lower reactivity of the lattice oxygen of the Cs+-modified catalyst
further contributed to the increase in PO selectivity. Through
in situ XRD, CO-adsorbed FT-IR, and pulse-reaction studies, we fur-
ther clarified that CuI generated during the reaction worked for the
epoxidation of C3H6 by O2. It was proposed that CuI activated O2,
forming the active oxygen species for the conversion of C3H6 to
PO. However, too high a concentration of CuI sites is unfavorable
to the PO selectivity.
Acknowledgments
This work was supported by the National Basic Program of Chi-
na (No. 2010CB732303), the Natural Science Foundation of China
(Nos. 21173174, 21033006, 21161130522, and 20923004), the
Program for Changjiang Scholars and Innovative Research Team
in University (No. IRT1036), and a Key Scientific Project of Fujian
Province (2009HZ0002-1).
References
[1] J.R. Monnier, Appl. Catal. A 221 (2001) 73–91.
[46] J.M. Coxon, R.G.A.R. Maclagan, A. Rauk, A.J. Thrope, D. Whalen, J. Am. Chem.
Soc. 119 (1997) 4712–4718.
[47] G.N. Lewis, Valency and Structure of Atoms and Molecules, Wiley, New York,
1923.
[2] M. McCoy, Chem. Eng. News 79 (43) (2001) 19–20.
[3] T.A. Nijhuis, M. Makkee, J.A. Moulijn, B.M. Weckhuysen, Ind. Eng. Chem. Res. 45
(2006) 3447–3459.
[4] Y. Wang, W. Zhu, Q. Zhang, Chin. J. Catal. 29 (2008) 857–865.
[5] Q. Zhang, W. Deng, Y. Wang, Chem. Commun. 47 (2011) 9275–9292.
[6] J. Huang, M. Haruta, Res. Chem. Intermed. 38 (2012) 1–24.
[7] M.G. Clerici, G. Bellussi, U. Romano, J. Catal. 129 (1991) 159–167.
[8] A. Tullo, Chem. Eng. News 82 (36) (2004) 15.
[9] T. Hayashi, K. Tanaka, M. Haruta, J. Catal. 178 (1998) 566–575.
[10] A.K. Sinha, S. Seelan, S. Tsubota, M. Haruta, Angew. Chem. Int. Ed. 43 (2004)
1546–1548.
[48] K. Hadjiivanov, H. Knözinger, Phys. Chem. Chem. Phys. 3 (2001) 1132–1137.
[49] K.I. Hadjiivanov, G.N. Vayssilov, Adv. Catal. 47 (2002) 307–511.
[50] D. Scarano, S. Bordiga, C. Lamberti, G. Spoto, G. Ricchiardi, A. Zecchina, A.C.
Otero, Surf. Sci. 411 (1998) 272–285.
[51] A. Frache, M. Cadoni, C. Bisio, L. Marchese, Langmuir 18 (2002) 6875–6880.
[52] J. Haber, W. Turek, J. Catal. 190 (2000) 320–326.
[53] Y. Li, D. An, Q. Zhang, Y. Wang, J. Phys. Chem. 112 (2008) 13700–13708.
[54] R.K. Grasselli, Top. Catal. 21 (2002) 79–88.
[11] B. Chowdhury, J.J. Bravo-Sárez, M. Daté, S. Tsubota, M. Haruta, Angew. Chem.
Int. Ed. 45 (2006) 412–415.