decomposition reactions or the water gas shift reaction. Heavier
products can form via condensation reactions of glycerol or the
aldehydic intermediates. In addition to the pathways described
in Scheme 1, we propose that ethanol is also likely to form via
4 T. Miyazawa, Y. Kusunoki, K. Kunimori and K. Tomishige, J. Catal.,
2
006, 240, 213–221.
5
R Garcia, M. Besson and P. Gallezot, Appl. Catal., A, 1995, 127,
1
65–176.
6 M. A. Dasari, P. P. Kiatsimkul, W. R. Sutterlin and G. J. Suppes,
1
,2-PDO.
Appl. Catal., A, 2005, 281, 225–231.
7
8
P. Bloom, Archer Daniels Midland Company, US 0103339 (2008).
R. Bullock, P. J. Fagan, E. M. Hauptman and M. Schalf (E. I. Du
Pont de Nemours and company), World Pat. WO 98241, 2001.
L. Huang, Y. L. Zhu, H. Y. Zheng, Y. W. Li and Z. Y. Zeng, J. Chem.
Technol. Biotechnol., 2008, 83, 1670–1675.
4
. Conclusion
9
The effect of increasing pressure was observed to have little
influence on glycerol conversion. However, the selectivity to 1,2-
1
1
0 E. Drent and W. W. Jager (Shell Oil Company), US Pat. 6080898,
2
000.
PDO decreased with increasing pressure while EG and CH
4
1 I. Furikado, T. Miyazawa, S. Koso, A. Shimao, K. Kunimori and K.
selectivity was observed to increase. The selectivity to lower
alcohols remained essentially unchanged.
Temperature was observed to have a significant effect on the
Tomishige, Green Chem., 2007, 9, 582–588.
12 P. D. Pavlechko, PEP Report No. 268: Higher alcohols from syngas,
SRI Consulting, 2009.
1
1
3 E. Linak, CEH Marketing Research Report: Ethanol, 2009.
4 S. Bizarri, M. Blagoev, and H. Mori, CEH Marketing Research
Report: Glycerin, 2008.
glycerol conversion with Ni/SiO
2
, giving a higher conversion
than Ni/Al except at the lowest temperature studied. With
2
O
3
1
1
5 E. S. Vasiliadou, E. Heracleous, I. A. Vasalos and A. A. Lemonidou,
Appl. Catal., B, 2009, 92, 90–99.
6 S. Rakass, H. Oudghiri-Hassani, P. Rowntree and N. Abatzoglou,
J. Power Sources, 2006, 158, 485–496.
respect to selectivity, 1,2-PDO was dominant at low tempera-
ture, whilst alcohols such as propanol, ethanol and methanol
dominated the product profile at higher temperature. At 320 C,
◦
a quantitative conversion of glycerol was observed, with a total
selectivity of 69% to lower alcohols which included 1-propanol,
ethanol and methanol. To the best of our knowledge, this is
the highest selectivity reported to lower alcohols from glycerol
using a continuous-flow fixed-bed reactor with an inexpensive
catalytic system.
The pathway to the lower alcohols is proposed to occur via
degradation of the intermediate polyols such as 1,2-PDO, 1,3-
PDO and possibly EG. A mechanistic study is in progress to
establish the route to the lower alcohols via glycerol.
Comparison of the product selectivity of the two catalysts
revealed that the intrinsic properties of the support, such as the
acidity of the support and the metal–support interaction, may
have had an influence.
17 S. Shang, G. Liu, X. Chai, X. Tao, X. Li, M. Bai, W. Chu, X. Dai, Y.
Zhao and Y. Yin, Catal. Today, 2009, 148, 268–274.
1
8 Z. Huang, F. Cui, H. Kang, J. Chen and C. Xia, Appl. Catal., A,
2
009, 366, 288–298.
19 A. Saadi, R. Merabti, Z. Rassoul and M. M. Bettahar, J. Mol. Catal.
A: Chem., 2006, 253, 79–85.
2
2
2
2
0 J. M. Rynkowski, T. Paryjczak and M. Lenik, Appl. Catal., A, 1993,
1
06, 73–82.
1 P. Kim, Y. Kim, H. Kim, I. K. Song and J. Yi, J. Mol. Catal. A:
Chem., 2005, 231, 247–254.
2 J.-T. Feng, Y.-J. Lin, D. G. Evans, X. Duan and D.-Q. Li, J. Catal.,
2
009, 266, 351–358.
3 R. Yang, X. Li, J. Wu, X. Zhang, Z. Zhang, Y. Cheng and J. Gou,
Appl. Catal., A, 2009, 368, 105–112.
24 B. Mile, D. Striling and M. A. Zammitt, J. Mol. Catal., 1990, 62,
1
79–198.
2
2
5 K. Pattamakomsan, K. Suriye, S. Dokjampa, N. Mongkolsiri, P.
Praserthdam and J. Panpranot, Catal. Commun., 2010, 11, 311–316.
6 A. E. Aksoylu, Z. Misirli and Z. I. Onsan, Appl. Catal., A, 1998, 168,
3
85–397.
Acknowledgements
27 D. N. Srivastava, N. Perkas, G. A. Seisenbaeva, Y. Koltypin, V. G.
Kessler and A. Gedanken, Ultrason. Sonochem., 2003, 10, 1–9.
28 G. A. Sharpataya, G. P. Panasyuk, G. P. Budova, Z. P. Ozerova, I. L.
Voroshilov and V. B. Lazarev, Thermochim. Acta, 1985, 93, 271–274.
2
3
3
3
3
All catalytic work was performed at Sasol Technology Research
and Development, and catalyst characterisation was carried out
at the University of KwaZulu-Natal. We would also like to thank
the Electron Microscope Unit as well as the Catalysis Research
Group at the University of KwaZulu-Natal for the help with the
characterisation data.
9 M. Balaraju, V. Rekha, P. S. Sai Prasad, B. L. A. Prabhavathi Devi,
R. B. N. Prasad and N. Lingaiah, Appl. Catal., A, 2009, 354, 82–87.
0 I. Furikado, T. Miyazawa, S. Koso, A. Shimao, K. Kunimori and K.
Tomishige, Green Chem., 2007, 9, 582–588.
1 L. Huang, J. Xie, R. Chen, D. Chu and A. T. Hsu, Mater. Res. Bull.,
2
010, 45, 92–96.
2 R. J. J. Nel and A. de Klerk, Ind. Eng. Chem. Res., 2009, 48, 5230–
References
5238.
3 I. Gandarias, P. L. Arias, J. Requies, M. B. Guemez and J. L. G.
Fierro, Appl. Catal., B, 2010, 97, 248–256.
1
2
3
Y. Zheng, X. Chen and Y. Shen, Chem. Rev., 2008, 108, 5253–
277.
T. Hirai, N. Ikenaga, T. Miyake and T. Suzuki, Energy Fuels, 2005,
5
34 J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel and
C. Rosier, Green Chem., 2004, 6, 359–361.
35 C. Montassier, J. C. Menezo, L. C. Hoang, C. Renaud and J. Barbier,
J. Mol. Catal., 1991, 70, 99–110.
36 E. P. Maris and R. J. Davis, J. Catal., 2007, 249, 328–337.
1
9, 1761–1762.
J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel and
C. Rosier, Green Chem., 2004, 6, 359–361.
This journal is © The Royal Society of Chemistry 2011
Green Chem., 2011, 13, 1819–1827 | 1827