Journal of the American Chemical Society
Article
(e) Ramstrom, O.; Lehn, J.-M. In Comprehensive Medicinal Chemistry
̈
Looking ahead, the results reported above suggest numerous
extensions in the area of constitutional dynamic covalent
processes, such as group transfer between sites in branched
polyamines, pattern formation on reversible multiple attach-
ment to polyfunctional amines, oriented motions along a track
seeking the thermodynamically most stable patterns or
kinetically the most easily accessible ones, exploiting internal
self-catalysis, operating fluxional degenerate exchange through
continuous bond breaking−bond making processes (that
present analogies to the epitomic molecule bullvalene30) in
multifunctional carbonyl as well as amine molecules. The
processes described here, together with their molecular motor-
type features31 make imines a class of compounds presenting a
particularly rich and wide palette of structural, conformational,
and configurational features,31b as well as of constitutional and
motional dynamic behaviors.
II; Triggle, D., Taylor, J., Eds.; Elsevier Ltd.: Oxford, 2007; pp 959.
(6) (a) For the dynamic formation of capsule-type structures, see for
instance: Rue, N. M.; Sun, J.; Warmuth, R. Israel J. Chem. 2011, 51,
743−768. (c) Lin, Z.; Enge, T. J.; Warmuth, R. Chem.Eur. J. 2011,
17, 9395−9405. (d) Givelet, C.; Sun, J.; Xu, D.; Emge, T. J.; Dhokte,
A.; Warmuth, R. Chem. Commun. 2011, 47, 4511−4513. (b) For the
generation of highly entangled architectures, up to borromean rings,
see: Chichak, K .S.; Cantrill, S. J.; Pease, A. R.; Chiu, S.-H.; Cave, G.
W. V.; Atwood, J. L.; Stoddart, J. F. Science 2004, 304, 1308−1312.
(e) For the assembly of dynamic metallosupramolecular nanostruc-
tures, see: Nitschke, J. R.; Lehn, J.-M. Proc. Natl. Acad. Sci. U.S.A. 2003,
100, 11970−11974. (f) Giuseppone, N.; Schmitt, J.-L.; Lehn, J.-M.
Angew. Chem., Int. Ed 2004, 43, 4902−4906. (g) Nitschke, J. R. Acc.
Chem. Res. 2007, 40, 103−112.
(7) (a) Zhao, D.; Moore, J. S. J. Am. Chem. Soc. 2002, 124, 9996−
9997. (b) Lehn, J.-M. Prog. Polym. Sci. 2005, 30, 814−831. (c) Lehn,
J.-M. Aust. J. Chem. 2010, 63, 611−623. (d) Aida, T.; Maije, E. W.;
Stupp, S. I. Science 2012, 335, 813−817. (e) Matson, J. B.; Stupp, S. I.
Chem. Commun. 2011, 47, 7962−7964. (f) Moulin, E.; Cormos, G.;
Giuseponne, N. Chem. Soc. Rev. 2012, 41, 1031−1049.
(8) (a) Metzler, C. M.; Cahill, A.; Metzler, D. E. J. Am. Chem. Soc.
1980, 102, 6075−6082. (b) Singh, R. M. B.; Main, L. Aust. J. Chem.
1983, 36, 2327−2332. (c) McQuate, R. S.; Leussing, D. L. J. Am.
Chem. Soc. 1975, 97, 5117−5124. (d) Klekota, B.; Hammond, M. H.;
Miller, B. L. Tetrahedron Lett. 1997, 38, 8639−8642. (e) Star, A.;
Goldberg, I.; Fuchs, B. J. Organomet. Chem. 2001, 630, 67−77.
(9) (a) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew.
Chem., Int. Ed. 2000, 39, 3348−3391. (b) Bonnet, S.; Collin, J.-P.;
Koizumi, M.; Mobian, P.; Sauvage, J.-P. Adv. Mater. 2006, 18, 1239−
1250. (c) Kay, E. R.; Leigh, D. A.; Zerbetto, F. Angew. Chem., Int. Ed.
2007, 46, 72−191. (d) Saha, S.; Stoddart, J. F. Chem. Soc. Rev. 2007,
36, 77−92. (e) Sauvage, J.-P., Gaspard, P., Eds. From Non-Covalent
Assemblies to Molecular Machines; Wiley-VCH: Weinheim, 2011.
(f) Coskun, A.; Banaszak, M.; Astumian, R. D.; Stoddart, J. F.;
Grzybowski, B. A. Chem. Soc. Rev. 2012, 41, 19−30.
ASSOCIATED CONTENT
* Supporting Information
■
S
All experimental details, NMR spectra, and calculations. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the Universite
́
de Strasbourg for a doctoral fellowship
́
to Petr Kovarı
̌
ce
̌
k as well as the CNRS and the ANR 2010
BLAN-717-1 project for financial support.
(10) (a) Kreis, T., Vale, R., Eds. Guidebook to the Cytoskeletal and
Motor Proteins, 2nd ed.; Oxford University Press: Oxford, 1999.
(b) Schliwa, M., Ed.; Molecular Motors; Wiley-VCH Verlag: Weinheim,
2003. (c) Vale, R. D. Cell 2003, 112, 467−480. (d) Miki, H.; Okada,
Y.; Hirokawa, N. Trends Cell Biol. 2005, 15, 467−476. (e) Hirokawa,
N. Trends Cell Biol. 1996, 6, 135−141. (f) Thompson, R. F.; Langford,
G. M. Anat. Rec. 2002, 268, 276−289. (g) Cross, R. A. Curr. Biol. 2004,
14, 355−356. (h) Dallos, P.; Fakler, B. Nat. Rev. Mol. Cell Biol. 2002, 3,
104−111. (i) Holzbaur, E. L. F.; Goldman, Y. E. Curr. Opin. Cell Biol.
2010, 22, 4−13.
(11) (a) Auld, D. S.; Bruice, T. C. J. Am. Chem. Soc. 1967, 89, 2083−
2089. (b) Metzler, D. E. J. Am. Chem. Soc. 1957, 79, 485−490.
(c) Heinert, D.; Martell, A. E. J. Am. Chem. Soc. 1963, 85, 183−188.
(12) Nakamoto, K.; Martell, A. E. J. Am. Chem. Soc. 1959, 81, 5857−
5863.
REFERENCES
■
(1) (a) Lehn, J.-M. Chem.Eur. J. 1999, 5, 2455−2463. (b) Rowan,
S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F.
Angew. Chem., Int. Ed. 2002, 41, 898−952. (c) Cheeseman, J. D.;
Corbett, A. D.; Gleason, J. L.; Kazlauskas, R. J. Chem.Eur. J. 2005,
11, 1708−1716. (d) Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.;
Wietor, J.-L.; Sanders, J. K. M.; Otto, S. Chem. Rev. 2006, 106, 3652−
3711. (e) Ladame, S. Org. Biomol. Chem. 2008, 6, 219−226. (f) Hunt,
R. A. R.; Otto, S. Chem. Commun. 2011, 47, 847−858. (g) Cougnon,
F. B. L.; Jenkins, N. A.; Dan Patos,̧ G; Sanders, J. K. M. Angew. Chem.,
Int. Ed. 2012, 51, 1443−1447. (h) Belowich, M.; Stoddart, J. F. Chem.
Soc. Rev. 2012, 41, 2003−2024.
(2) (a) Miller, B. L., Ed. Dynamic Combinatorial Chemistry; Wiley:
Chichester, 2010. (b) Reek, J. N. H., Otto, S., Eds. Dynamic
Combinatorial Chemistry; Wiley-VCH: Weinheim, 2010.
(3) (a) Cordes, E. H.; Jencks, W. P. J. Am. Chem. Soc. 1962, 84, 832−
837. (b) Leach, B. E.; Leussing, D. L. J. Am. Chem. Soc. 1971, 93,
3377−3384. (c) Fisher, H; DeCandis, F. X.; Ogden, S. D.; Jencks, W.
P. J. Am. Chem. Soc. 1980, 102, 1340−1374. (d) S. Patai, S., Ed.
Chemistry of Functional Groups - Carbon-Nitrogen Double Bonds; John
Wiley & Sons: Chichester, 1970. (e) Hogg, J. L.; Jencks, D. A.; Jencks,
W. P. J. Am. Chem. Soc. 1977, 99, 4772−4778.
(13) (a) Sprung, M. A. Chem. Rev. 1940, 26, 297−338. (b) Saggiomo,
V.; Luning, U. Tetrahedron Lett. 2009, 50, 4663−4665.
̈
(14) (a) Snell, E. E.; Jenkins, W. T. J. Comput. Cell. Physiol. 1959, 54,
161−177. (b) Tobias, P. S.; Kallen, R. G. J. Am. Chem. Soc. 1975, 97,
6530−6539. (c) Chan-Huot, M.; Sharif, S.; Tolstoy, P. M.; Toney, M.
D.; Limbach, H.-H. Biochemistry 2010, 49, 10818−140830. (d) Ro-
bitqille, P.-M.; Scott, R. D.; Wang, J.; Metzler, D. E. J. Am. Chem. Soc.
1989, 111, 3034−3040. (e) Crugeiras, J.; Rios, A.; Riveiros, E.;
Richard, J. P. J. Am. Chem. Soc. 2009, 131, 15815−15824.
(4) Godoy-Alcantar, C.; Yatsimirsky, A. K.; Lehn, J.-M. J. Phys. Org.
Chem. 2005, 18, 979−985.
(15) Dynamic covalent group transfers have been reported for several
functionalities. (a) For dynamic transacylations, see for instance:
(d) Clode, D. M. Chem. Rev. 1979, 79, 491−513. (e) Ahn, Y.-H.;
Chang, Y.-T. Chem.Eur. J. 2004, 10, 3543−3547. (f) Doerschuk, A.
P. J. Am. Chem. Soc. 1952, 74, 4202−4203. (b) For dynamic borinates,
see: Kessler, H.; Zimmermann, G.; Fietze, H.; Mohrle, H. Chem. Ber.
1978, 111, 2605−2614. (c) For dynamic nitrogen−oxygen trans-
acylations, see: Fodor, G.; Kiss, J. J. Am. Chem. Soc. 1950, 72, 3495−
(5) (a) Ramstrom, O.; Lehn, J.-M. Nat. Rev. Drug. Discovery 2002, 1,
̈
26−36. (b) Ramstrom, O.; Lohmann, S.; Bunyapaiboonsri, T.; Lehn,
̈
J.-M. Chem.Eur. J. 2004, 10, 1711−1715. (c) Hotchkiss, T.; Kramer,
H. B.; Doores, K. J.; Gamblin, D. P.; Oldham, N. J.; Davis, B. G. Chem.
Commun. 2005, 4264−4266. (d) Hochgurtel, M.; Lehn, J.-M. In
Fragment-based Approaches in Drug Discovery; Mannhold, R., Kubinyi,
H., Folkers, G., Eds.; Wiley-VCH: Weinheim, 2006; pp 361−364.
̈
9454
dx.doi.org/10.1021/ja302793c | J. Am. Chem. Soc. 2012, 134, 9446−9455