Angewandte Chemie International Edition
10.1002/anie.202009498
RESEARCH ARTICLE
intermediate(s) are either *CH
2
or other species (e.g., *COH,
(Figure
complicated CO
2
reduction pathways. This approach is
*
CHO, *C, *CH) that can further be converted to *CH
2
transferable to other electrocatalytic reactions and materials. This
work demonstrates the possibility of moderating the CO2RR
product spectrum by rationally leveraging the IL modification
effect, which can be key to finely tuning the catalytic properties of
S16). Another key question is how the IL molecules can trap the
surface intermediate(s). IL molecules are reported to adopt a
charge-separated layered structure with alternating cation-/anion-
rich layer at electrified surfaces.[17f,37] Accordingly, [BMIm]+
cations should be enriched at the innermost (Stern) layer of the
electrode-electrolyte interface when the electrode is negatively
2
a CO reduction catalyst at a molecular level.
polarized (i.e., the CO
2
electrolysis conditions). Therefore,
Acknowledgements
+
understanding of how [BMIm] cations can possibly interact with
other species would be crucial to extrapolate the role of ILs during
the CO2RR. It is well documented that an imidazolium cation can
The authors acknowledge the funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No.
681719). We thank Dr. Marc Ledendecker for his comments and
suggestions on the manuscript. We also thank Prof. Hongbin
Zhang, Mr. Yi Xiao and Prof. Bo Li for fruitful discussions.
easily be deprotonated at its C2-site, thus converting the C2-site
into a reactive center due to its nucleophilicity.[38] Accordingly, to
+
clarify whether [BMIm] interacts with surface intermediate(s) via
its C2-site, an imidazolium-based IL on which the C2-site at the
imidazolium cation ring is “neutralized” by a methyl group
+
(
denoted as [BMMIm] , Figure S17a), was used for modifying Cu
foams. It turns out that the chemical trapping effect of the IL is not
pronounced. Both ethanol and propanol can be detected, and the
formation of ethylene at high overpotentials is not suppressed
2
Keywords: CO reduction • chemical trapping • ionic liquid • Cu
foam • mechanism
(
Figure S18). Furthermore, another IL, [HMIm][NTf
2
] which shares
[1] a) C. Costentin, M. Robert, J. M. Saveant, Chem. Soc. Rev. 2013, 42, 2423-
2436; b) J. L. Qiao, Y. Y. Liu, F. Hong, J. J. Zhang, Chem. Soc. Rev. 2014,
structural similarity with [BMIm][NTf ] but features a longer
2
43, 631-675; c) P. Strasser, M. Gliech, S. Kuehl, T. Moeller, Chem. Soc.
cationic chain, was also tested. Although both ethanol and
propanol can still be detected, their FEs are much lower than
those on unmodified counterpart, and ethylene formation is also
suppressed (Figure S18). Two more common ILs (i.e.,
Rev. 2018, 47, 715-735.
[2] a) C. Reller, R. Krause, E. Volkova, B. Schmid, S. Neubauer, A. Rucki, M.
Schuster, G. Schmid, Adv. Energy Mater. 2017, 7, 1602114; b) K. Klingan,
T. Kottakkat, Z. P. Jovanov, S. Jiang, C. Pasquini, F. Scholten, P. Kubella,
A. Bergmann, B. Roldan Cuenya, C. Roth, H. Dau, ChemSusChem 2018,
1
1, 3449-3459; c) S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li,
[
2 2
MTBD][NTf ], [P1444][NTf ]) were also tested for comparison. Not
J. Yang, Y. Xie, Nature 2016, 529, 68-71; d) K. Jiang, R. B. Sandberg, A.
J. Akey, X. Liu, D. C. Bell, J. K. Nørskov, K. Chan, H. Wang, Nat. Catal.
2018, 1, 111-119; e) H. Xiao, W. A. Goddard, T. Cheng, Y. Liu, Proc. Natl.
Acad. Sci. U.S.A. 2017, 10.1073/pnas.1702405114, 201702405.
surprisingly, no pronounced chemical trapping effect can be
identified using either IL (Figure S18). Their product spectra are
comparable to that of the unmodified Cu-Foam, except for a
[
3] a) Y. Hori, in Modern Aspects of Electrochemistry, 10.1007/978-0-387-
2 2
slightly higher FEs of H on Cu-Foam modified with [MTBD][NTf ],
49489-0_3 (Eds.: C. G. Vayenas, R. E. White, M. E. Gamboa-Aldeco),
Springer New York, New York, NY, 2008, pp. 89-189; b) H. Yoshio, K.
Katsuhei, S. Shin, Chem. Lett. 1985, 14, 1695-1698; c) Y. Hori, H. Wakebe,
T. Tsukamoto, O. Koga, Electrochim. Acta 1994, 39, 1833-1839; d) Y. Hori,
R. Takahashi, Y. Yoshinami, A. Murata, J. Phys. Chem. B 1997, 101, 7075-
probably due to the protonic nature of this IL. These results lead
us to hypothesize that the IL traps the surface key intermediates
through bonding with carbene (or other hydrogenated carbon
species) on Cu surfaces. This process may involve deprotonation
and following alkylation reactions at the C2-site of the imidazolium
ring.[39]
7081; e) P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S.
Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang, E. H. Sargent,
Nat. Catal. 2018, 1, 103-110.
a) A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. Nørskov,
Energy Environ. Sci. 2010, 3, 1311-1315; b) A. A. Peterson, J. K. Nørskov,
J. Phys. Chem. Lett. 2012, 3, 251-258.
[4]
[5] Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-
Vallejo, M. T. M. Koper, Nat. Energy 2019, 4, 732-745.
Conclusion
[
6] a) A. D. Handoko, F. Wei, Jenndy, B. S. Yeo, Z. W. Seh, Nat. Catal. 2018,
1, 922-934; b) T.-C. Chou, C.-C. Chang, H.-L. Yu, W.-Y. Yu, C.-L. Dong,
J.-J. Velasco-Vélez, C.-H. Chuang, L.-C. Chen, J.-F. Lee, J.-M. Chen, H.-
L. Wu, J. Am. Chem. Soc. 2020, 10.1021/jacs.9b11126; c) Y. Zheng, A.
Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, S.-Z. Qiao, J. Am. Chem. Soc. 2019,
This work outlines a new strategy to probe CO2RR pathways. IL
alters the product spectrum during the CO2RR on Cu foams.
Analyzing the responses of CO2RR products to IL modification is
a unique way to gain new insights into CO2RR pathways: 1)
Ethanol and n-propanol form explicitly through a “carbene”
mechanism, while formation of ethylene could proceed through
two independent pathways which involve carbene and dimerized
CO as key intermediates at high and low overpotentials,
respectively; 2) The presence of IL can selectively suppress the
formation of those products involving carbene intermediates,
likely by forming stable imidazolium-carbene compound(s); 3)
Ethane, which has long been considered a reduction product of
re-adsorbed ethylene during CO2RR, is identified as proceeding
with an independent pathway that involves CO dimerization
process. Considering the great structural flexibility in ILs,
141, 7646-7659; d) S. Zhu, T. Li, W.-B. Cai, M. Shao, ACS Energy Letters
2019, 4, 682-689.
[
7] B. D. Smith, D. E. Irish, P. Kedzierzawski, J. Augustynski, J. Electrochem.
Soc. 1997, 144, 4288-4296.
8] a) R. Kortlever, J. Shen, K. J. P. Schouten, F. Calle-Vallejo, M. T. M. Koper,
J. Phys. Chem. Lett. 2015, 6, 4073-4082; b) E. Pérez-Gallent, M. C.
Figueiredo, F. Calle-Vallejo, M. T. M. Koper, Angew. Chem. Int. Ed. 2017,
[
56, 3621-3624; c) K. D. Yang, C. W. Lee, K. Jin, S. W. Im, K. T. Nam, J.
Phys. Chem. Lett. 2017, 8, 538-545; d) Z. Sun, T. Ma, H. Tao, Q. Fan, B.
Han, Chem 2017, 3, 560-587.
[
[
[
[
[
9] R. Kas, O. Ayemoba, N. J. Firet, J. Middelkoop, W. A. Smith, A. Cuesta,
ChemPhysChem 2019, 20, 2904-2925.
10] S. Jiang, K. Klingan, C. Pasquini, H. Dau, J. Chem. Phys. 2019, 150,
041718.
11] H. Y. Wang, J. P. Liu, J. K. Fu, H. B. Zhang, K. R. Tsai, Res. Chem.
Intermed. 1992, 17, 233-242.
12] a) J. G. Ekerdt, A. T. Bell, J. Catal. 1980, 62, 19-25; b) J. A. Baker, A. T.
Bell, J. Catal. 1982, 78, 165-181.
13] a) J. Feng, S. Zeng, J. Feng, H. Dong, X. Zhang, Chin. J. Chem . 2018, 36,
9
61-970; b) G.-R. Zhang, B. J. M. Etzold, J. Energy Chem. 2016, 25, 199-
2
identification of reaction pathways for CO products by carefully
207; c) M. Alvarez-Guerra, J. Albo, E. Alvarez-Guerra, A. Irabien, Energy
designing task-specific ILs to selectively interact with intermediate
species may be feasible. The success of this will bring IL
modification closer to being a generic strategy for analyzing
Environ. Sci. 2015, 8, 2574-2599; d) S. J. Zhang, J. Sun, X. C. Zhang, J. Y.
Xin, Q. Q. Miao, J. J. Wang, Chem. Soc. Rev. 2014, 43, 7838-7869.
6
This article is protected by copyright. All rights reserved.