88
A. Yin et al. / Journal of Catalysis 280 (2011) 77–88
[5] T. Bligaard, J.K. Nørskov, J. Rossmeisl, C.H. Christensen, Nat. Chem. 1 (2009) 37.
[6] J.K. Nørskov, C.H. Christensen, Science 312 (2006) 1322.
[7] J.K. Nørskov, Nature 414 (2001) 405.
[8] F. Besenbacher, I. Chorkendorff, B.S. Clausen, B. Hammer, A.M. Molenbroek, J.K.
Nørskov, I. Stensgaard, Science 279 (1998) 1913.
state, i.e., immediately after reduction but prior to exposure to the
substrates, which is particularly relevant in view of the well-
known extreme sensitivity of metallic Ni to oxidation. As can be
seen from the spectra (see the supporting information), no obvious
differences in the BE values and surface ratios of Ni/Cu, Cu/Si, and
Ni/Si from the reduced catalysts could be observed, which indi-
cated that the surface chemical state and surface chemical compo-
sition of the Cu3Ni/HMS and Cu1Ni1/HMS catalysts were relatively
stable during the whole reaction. It was the stable surface chemical
environments that made sure that good activity and selectivity
could be maintained in the long term.
[9] A. Cao, G. Veser, Nat. Mater. 9 (2010) 75.
[10] A.Q. Wang, C.M. Chang, C.Y. Mou, J. Phys. Chem. B 109 (2005) 18860.
[11] X.Y. Liu, A.Q. Wang, X.F. Yang, T. Zhang, C.Y. Mou, D.S. Su, J. Li, Chem. Mater. 21
(2009) 410.
[12] P. Strasser, S. Koha, J. Greeley, Phys. Chem. Chem. Phys. 10 (2008) 3670.
[13] J.C. Dellamorte, J. Lauterbach, M.A. Barteau, Catal. Today 2 (2007) 182.
[14] S. Kameoka, A.P. Tsai, Catal. Today 132 (2008) 1.
[15] M.T. Schaal, A.Y. Metcalf, J.H. Montoya, J.P. Wilkinson, C.C. Stork, C.T. Williams,
J.R. Monnier, Catal. Today 123 (2007) 142.
[16] M. Kang, M.W. Song, T.W. Kim, Can. J. Chem. Eng. 80 (2002) 63.
[17] T. Huang, S. Jhao, Appl. Catal. A Gen. 302 (2006) 325.
[18] R.J. Best, W.W. Russel, J. Am. Chem. Soc. 76 (1954) 838.
[19] M.K. Gharpurey, P.H. Emmett, J. Phys. Chem. 65 (1961) 1182.
[20] Y. Liu, D.Z. Liu, Int. J. Hydrogen Energy 24 (1999) 351.
[21] Y. Li, J. Chen, L. Chang, Y. Qin, J. Catal. 178 (1998) 76.
[22] K.C. Khulbe, R.S. Mann, Catal. Rev. Sci. Eng. 24 (1982) 311.
[23] J.H. Sinfelt, J.L. Carter, D.J.C. Yates, J. Catal. 24 (1974) 28.
[24] Y. Sun, H. Wang, J.H. Shen, H.C. Liu, Z.M. Liu, Catal. Commun. 10 (2009) 678.
[25] A.Y. Yin, X.Y. Guo, W.L. Dai, K.N. Fan, Chem. Commun. 46 (2010) 4348.
[26] W.M.H. Sachtler, G.J.H. Dorgelo, R. Jongepier, J. Catal. 4 (1965) 100.
[27] S. Huffner, G.K. Werthein, J.H. Wernika, Phys. Rev. 138 (1973) 14511.
[28] A.Y. Yin, X.Y. Guo, W.L. Dai, H.X. Li, K.N. Fan, Appl. Catal. A Gen. 349 (2008) 91.
[29] A.Y. Yin, X.Y. Guo, W.L. Dai, K.N. Fan, J. Phys. Chem. C 113 (2009) 11003.
[30] A.Y. Yin, X.Y. Guo, W.L. Dai, K.N. Fan, Acta Chim. Sin. 67 (2009) 1731.
[31] A.Y. Yin, X.Y. Guo, W.L. Dai, K.N. Fan, ChemCatChem 2 (2010) 206.
[32] A.Y. Yin, X.Y. Guo, W.L. Dai, K.N. Fan, Appl. Catal. A Gen. 377 (2010) 128.
[33] A.Y. Yin, X.Y. Guo, W.L. Dai, K.N. Fan, J. Phys. Chem. C 114 (2010) 4348.
[34] P.T. Tanev, T.J. Pinnavaia, Science 267 (1995) 865.
4. Conclusions
High yields of MG and EG could be achieved over nickel–mod-
ified copper catalysts by tuning the nickel surface chemical states.
An 86% yield of MG and a 98% yield of EG could be obtained over
Cu1Ni1/HMS and Cu3Ni/HMS, respectively. The chemical states of
the nickel species were found to have a great influence on the cat-
alytic behavior. Copper-based catalysts promoted by oxidative
nickel species were favorable for EG synthesis due to the enhanced
dispersion of copper species, while MG could be obtained che-
moselectively over the bimetallic CuNi catalyst, which might result
from the synergetic effects of the metallic copper and nickel
species.
[35] J.W. Evans, M.S. Wainwright, A.J. Bridgewater, D.J. Young, Appl. Catal. 7 (1983)
75.
[36] G.R. Rodolfo, R. Jorge, N. Ruben, L. Rosario, M. Florentino, Catal. Today 107–108
(2005) 926.
Acknowledgments
[37] P. Burattin, M. Che, C. Louis, J. Phys. Chem. B 104 (2000) 10482.
[38] A.R. Naghash, T.H. Etsell, S. Xu, Chem. Mater. 18 (2006) 2480.
[39] B. Bridier, J. Perez-Ramirez, J. Am. Chem. Soc. 132 (2010) 4321.
[40] A. Gervasini, M. Manzoli, G. Martra, A. Ponti, N. Ravasio, L. Sordelli, F.
Zaccheria, J. Phys. Chem. B 110 (2006) 7851.
[41] C.J.G. van der Grift, P.A. Elberse, A. Mulder, J.W. Geus, Appl. Catal. 59 (1990)
275.
[42] F. Raimondi, K. Geissler, J. Wambach, A. Wokaun, Appl. Surf. Sci. 189 (2002) 59.
[43] L.F. Chen, P.J. Guo, Z.L. Jun, M.H. Qiao, W. Shen, H.L. Xu, K.N. Fan, Appl. Catal. A
356 (2009) 129.
We thank the Major State Basic Resource Development Program
(Grant 2003CB 615807), the NNSFC (Project 20973042), the Re-
search Fund for the Doctoral Program of Higher Education
(20090071110011) and the Science and Technology Commission
of Shanghai Municipality (08DZ2270500) for financial support.
Also, we express our sincere gratitude to one of the reviewers for
important and constructive suggestions.
[44] L. Huang, Y.L. Zhu, H.Y. Zheng, M.X. Du, Y.W. Li, Appl. Catal. A Gen. 349 (2008)
204.
Appendix A. Supplementary material
[45] B.M. Reddy, G.M. Kumar, L. Ganesh, A. Khan, J. Mol. Catal. A Chem. 247 (2006)
80.
[46] J.H. Sinfelt, Acc. Chem. Soc. 10 (1977) 15.
[47] S. Wu, C. Zhu, W. Huang, Chin. J. Polym. Sci. 14 (1996) 76.
[48] P. Li, J. Liu, N. Nag, P.A. Crozier, J. Catal. 262 (2009) 73.
[49] L.E. Murillo, A.M. Goda, J.G. Chen, J. Am. Chem. Soc. 129 (2007) 7101.
[50] S. Laref, F. Delbecq, D. Loffreda, J. Catal. 265 (2009) 35.
[51] L.E. Murillo, C.A. Menning, J.G. Chen, J. Catal. 268 (2009) 335.
[52] G.D. Weatherbee, C.H. Bartholomew, J. Catal. 68 (1981) 67.
[53] U.K. Singh, M.A. Vannice, J. Catal. 199 (2001) 73.
Supplementary data associated with this article can be found, in
References
[1] C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105 (2005) 1025.
[2] A. Hugon, L. Delannoy, J.M. Krafft, C. Louis, J. Phys. Chem. C 114 (2010) 10823.
[3] C. Della Pina, E. Falletta, M. Rossi, J. Catal. 260 (2008) 384.
[54] M.A. Keane, J. Catal. 166 (1997) 347.
[4] J.A. Rodriguez, D.W. Goodman, Science 257 (1992) 897.