F
M. U. Luescher, J. W. Bode
Letter
Synlett
Funding Information
(15) (a) Luescher, M. U.; Jindakun, C.; Bode, J. W. Org. Synth. 2018, 95,
345. (b) Luescher, M. U.; Jindakun, C.; Bode, J. W. Org. Synth.
2018, 95, 357.
(16) (a) Yoshida, J.-I.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem.
Rev. 2008, 108, 2265. (b) Yoshida, J.-I.; Izawa, M. J. Am. Chem.
Soc. 1997, 119, 9361. (c) Eberson, L.; Hartshorn, M. P.; Persson,
O.; Radner, F. Chem. Commun. 1996, 2105.
This work was supported by the European Research Council (ERC
Starting Grant No. 306793-CASAA).
E
uro
p
e
a
n
R
esearc
h
C
o
u
n
c
i
l(3
0
6
7
9
3-C
A
S
A
A)
Acknowledgment
(17) Luo, P.; Dinnocenzo, J. P. J. Org. Chem. 2015, 80, 9240.
(18) Dockery, K. P.; Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.; Gould,
I. R.; Todd, W. P. J. Am. Chem. Soc. 1997, 119, 1876.
We thank the MS Service and NMR Service of the Laboratory of
Organic Chemistry at ETH Zurich for analysis.
(19) Dean, J. A. In Lange’s Handbook of Chemistry; McGraw-Hill: New
York, 1999, 15th ed., 4.41–4.53.
(20) General Procedure SnAP Protocol
Supporting Information
Imine formation: To a solution of the SnAP reagent (0.50
mmol, 1.00 equiv) in CH2Cl2 or acetonitrile (3.0 mL) at r.t. was
added the corresponding aldehyde (0.50 mmol, 1.00 equiv) and
3 Å or 4 Å MS powder (ca. 50 mg). The reaction mixture was
stirred at r.t. for 4 h and filtered through a short layer of Celite
(CH2Cl2 rinse). The filtrate was concentrated under reduced
pressure to afford the pure air-stable imine that was used in the
next step without further purification.
SnAP cyclization: Separately, anhydrous Cu(OTf)2 (0.50 mmol,
1.00 equiv) was suspended in CH2Cl2–HFIP (3:1; 8.0 mL). 2,6-
Lutidine (0.50 mmol, 1.00 equiv) was added and the resulting
bluish suspension was stirred at r.t. for 1 h to afford a dark green
suspension. A solution of the imine (0.50 mmol, 1.00 equiv) in
CH2Cl2 (2.0 mL) was added in one portion and the resulting
mixture was stirred at r.t. for 12 h. The reaction mixture was
diluted with CH2Cl2 (20 mL), treated with a solution of 12% aq
NH4OH and brine (1:1, 20 mL), and stirred vigorously for 20 min
at r.t. The layers were separated, and the aqueous layer was
extracted with CH2Cl2 (2 x 5 mL). The combined organic layers
were washed with H2O (2 x 5 mL) and brine (10 mL), dried with
anhydrous Na2SO4, filtered, and concentrated. Purification by
flash column chromatography afforded the desired C-substi-
tuted unprotected morpholines.
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
References and Notes
(1) Present address: Michael. U. Luescher, Department of Chemis-
try and Chemical Biology (CCB), Harvard University, Cambridge,
MA 02138, United States of America
(2) (a) Vo, C.-V. T.; Mikutis, G.; Bode, J. W. Angew. Chem. Int. Ed.
2013, 52, 1705. (b) Luescher, M. U.; Vo, C.-V. T.; Bode, J. W. Org.
Lett. 2014, 16, 1236. (c) Vo, C.-V. T.; Luescher, M. U.; Bode, J. W.
Nat. Chem. 2014, 6, 310. (d) Geoghegan, K.; Bode, J. W. Org. Lett.
2015, 17, 1934. (e) Luescher, M. U.; Bode, J. W. Angew. Chem. Int.
Ed. 2015, 54, 10884. (f) Luescher, M. U.; Bode, J. W. Org. Lett.
2016, 18, 2652.
(3) Hideto, M.; Ueda, M.; Naito, T. Synlett 2004, 1140.
(4) Jindakun, C.; Hsieh, S.-Y.; Bode, J. W. Org. Lett. 2018, 20, 2071.
(5) Paderes, M. C.; Belding, L.; Fanovic, B.; Dudding, T.; Keister, J. B.;
Chemler, S. R. Chem. Eur. J. 2012, 18, 1711.
(6) Vogler, T.; Studer, A. Synthesis 2008, 1979.
(7) Michel, C.; Belanzoni, P.; Gamez, P.; Reedjik, J.; Baerends, E. J.
Inorg. Chem. 2009, 48, 11909.
Spectral Data for Selected Compounds
(8) (a) Youn, S. W.; Jang, S. S.; Lee, S. R. Tetrahedron 2016, 72, 4902.
(b) Dang, T. T.; Boeck, F.; Hintermann, L. J. Org. Chem. 2011, 76,
9353. (c) Tschan, M. J.-L.; Thomas, C. M.; Strub, H.; Carpentier,
J.-F. Adv. Synth. Catal. 2009, 351, 2496. (d) Wabnitz, T. C.; Yu,
J.-Q.; Spencer, J. B. Chem. Eur. J. 2004, 10, 484.
3-(4-(Trifluoromethyl)phenyl)morpholine (7): Yield: 98.5 mg
(86%); clear colorless oil; IR (thin film): 3313, 3068, 2961, 2912,
2889, 2852, 1676, 1603, 1584, 1398, 1365, 1335, 1232, 1105
cm–1 1H NMR (400 MHz, CDCl3): = 7.59 (d, J = 8.2 Hz, 2 H),
;
7.52 (d, J = 8.2 Hz, 2 H), 3.99 (dd, J = 10.0, 3.2 Hz, 1 H), 3.93–3.85
(m, 1 H), 3.81 (dd, J = 11.1, 3.2 Hz, 1 H), 3.65 (td, J = 11.1, 2.7 Hz,
1 H), 3.35 (dd, J = 11.1, 10.0 Hz, 1 H), 3.14 (td, J = 11.6, 3.3 Hz, 1
H), 3.01 (dt, J = 11.8, 2.0 Hz, 1 H), 1.90 (br s, NH); 13C NMR (100
MHz, CDCl3): = 144.7 (q, JCF = 1.40 Hz), 130.1 (q, JCF = 32.4 Hz),
127.7, 125.6 (q, JCF = 3.72 Hz), 124.2 (q, JCF = 272.2 Hz), 73.6,
67.4, 60.3, 46.5; Rf = 0.18 (hexanes/EtOAc 1:1); ESI-HRMS: m/z
[M + H] calcd for C11H13F3N1O1: 232.0944; found: 232.0946.
(9) Brown, H. C.; Kanner, B. J. Am. Chem. Soc. 1966, 88, 986.
(10) Luo, P.; Dinnocenzo, J. P. J. Org. Chem. 2015, 80, 9240.
(11) (a) Yoshida, J.-I.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem.
Rev. 2008, 108, 2265. (b) Glass, R. S.; Radspinner, A. M.; Singh,
W. P. Tetrahedron 1992, 114, 4921. (c) Yoshida, J.-I.; Ishichi, Y.;
Nishiwaki, K.; Shiozawa, S.; Isoe, S. Tetrahedron Lett. 1992, 33,
2599. (d) Yoshida, J.-I.; Maekawa, T.; Murata, T.; Matsunaga, S.-I.;
Isoe, S. J. Am. Chem. Soc. 1990, 112, 1962.
(±)–cis-3-Ethyl-5-(4-methyl-3-nitrophenyl)
morpholine
(12) Musa, O. M.; Horner, J. H.; Shahin, H.; Newcomb, M. J. Am. Chem.
Soc. 1996, 118, 3862.
(15): Yield: 102 mg (82%, d.r. > 20:1); colorless oil; IR (thin
film): 2963, 2932, 2878, 2848, 1528, 1454, 1349, 1105cm–1; H
1
(13) (a) Newcomb, M. Encyclopedia of Radicals in Chemistry, Biology
and Materials; Vol. 1; Chatgilialoglu, C.; Studer, A., Eds.; Wiley:
Chichester, UK, 2012, 107–124. (b) Beckwith, A. L. J.; Bowry, V.
W. J. Am. Chem. Soc. 1994, 116, 2710. (c) Newcomb, M. Tetrahe-
dron 1993, 49, 1151. (d) Griller, D.; Ingold, K. U. Acc. Chem. Res.
1980, 13, 317.
(14) (a) Chen, Y.; Goldberg, F. W.; Xiong, J.; Wang, S. Synthesis 2015,
47, 679. (b) Crimmins, M. T.; Shamszad, M. Org. Lett. 2007, 9,
149. (c) Barrow, J. C.; Ngo, P. L.; Pellicore, J. M.; Selnick, H. G.;
Nantermet, P. G. Tetrahedron Lett. 2001, 42, 2051. (d) Tang, T. P.;
Volkman, S. K.; Ellman, J. A. J. Org. Chem. 2001, 66, 8772.
NMR (400 MHz, CDCl3): = 8.03 (d, J = 1.8 Hz, 1 H), 7.52 (dd, J =
7.9, 1.8 Hz, 1 H), 7.29 (d, J = 7.9 Hz, 1 H), 4.01 (dd, J = 10.2, 3.2
Hz, 1 H), 3.84 (dd, J = 10.9, 3.0 Hz, 1 H), 3.78 (dd, J = 11.0, 3.2 Hz,
1 H), 3.28–3.14 (m, 2 H), 2.96–2.85 (m, 1 H), 2.56 (s, 3 H), 1.89
(br s, NH), 1.50–1.27 (m, 2 H), 0.94 (t, J = 7.5 Hz, 3 H); 13C NMR
(100 MHz, CDCl3): = 149.5, 147.4, 140.3, 132.9, 132.7, 132.0,
123.4, 73.2, 72.0, 59.7, 56.8, 25.5, 20.2, 10.1; Rf = 0.30 (hex-
anes/EtOAc 1:1); ESI-HRMS: m/z [M + H]+ calcd for C13H19N2O3:
251.1390; found: 251.1394.
Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–G