Journal of the American Chemical Society
Communication
D.; Dai, Y.-C.; Zhang, H.; Yan, L.-Q.; Sheng, E.-H.; Wei, Y.; Mu, X.-L.;
Huang, K.-W. Org. Biomol. Chem. 2014, 12, 5509.
ASSOCIATED CONTENT
Supporting Information
■
*
S
(
8) (a) Peng, B.; Geerdink, D.; Fares
Soc. 2013, 135, 14968. (b) Peng, B.; Geerdink, D.; Fares
N. Angew. Chem., Int. Ed. 2014, 53, 5462.
̀
, C.; Maulide, N. J. Am. Chem.
̀
, C.; Maulide,
Crystallographic data (CIF)
Crystallographic data (CIF)
Experimental details and data; complete ref 13 (PDF)
(9) For elegant examples of metal-free amide activation, see: (a) Sisti,
N. J.; Fowler, F. W.; Grierson, D. S. Synlett 1991, 1991, 816.
(
b) Thomas, E. W. Synthesis 1993, 1993, 767. (c) Sisti, N. J.; Zeller, E.;
Grierson, D. S.; Fowler, F. W. J. Org. Chem. 1997, 62, 2093.
d) Charette, A. B.; Grenon, M. Tetrahedron Lett. 2000, 41, 1677.
(e) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 14254.
f) Movassaghi, M.; Hill, M. D.; Ahmad, O. K. J. Am. Chem. Soc. 2007,
29, 10096. (g) Movassaghi, M.; Hill, M. D. Org. Lett. 2008, 10, 3485.
(
AUTHOR INFORMATION
Author Contributions
(
1
(
(
h) Barbe, G.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 18.
i) Pelletier, G.; Bechara, W. S.; Charette, A. B. J. Am. Chem. Soc. 2010,
§
These authors contributed equally.
1
32, 12817. (j) Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem.
2012, 4, 228.
10) Kyba, E. P. In Azide and Nitrenes, Reactivity and Utility; Scriven,
E. F. V., Ed.; Academic Press Inc.: Orlando, FL, 1984, 2−34.
11) See SI for full crystallographic data, optimization of the reaction
Notes
(
The authors declare no competing financial interest.
(
ACKNOWLEDGMENTS
■
conditions, a mechanistic proposal for the formation of 5 and 8 and
the DFT computations for the hydrolysis of amidinium D into 3bb.
(12) Rens, M.; Ghosez, L. Tetrahedron Lett. 1970, 43, 3765.
(13) All DFT computations were carried out at the SMD(DCM)
M06-2X/def2-QZVP//M06-2X/6-31+G* level of theory using the
Gaussian 09 software package. Frisch, M. J., et al. Gaussian 09,
Revision D.01; Gaussian, Inc.: Wallingford, CT, 2013. For the full
citation as well as the full computational details, see the SI.
Generous support of this research by the University of Vienna,
the ERC (StG 278872) and the FWF (P27194) is acknowl-
edged. Invaluable assistance by Ing. A. Roller (U. Vienna) with
crystallographic analysis and Dr. H. Kahlig (U. Vienna) with
̈
NMR analysis is acknowledged.
REFERENCES
■
(
14) The rather long incipient N−N bond (1.67 Å) and rather short
(
1) (a) Albericio, F.; Kruger, H. G. Future Med. Chem. 2012, 4, 1527.
b) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2016, 79, 629.
incipient C−N bond (1.39 Å) are indicative of a late transition state.
(
orbital interaction adds 15.1 kcal mol of stabilizing energy to TS
Notably, the very same orbital interaction already adds 4.1 kcal mol
(
15) As judged by NBO analysis, the pivotal π(CC)→σ*(N−N)
(
2) For general reviews, see: (a) Liu, C. C.; Schultz, P. G. Annu. Rev.
Biochem. 2010, 79, 413. (b) Young, T. S.; Schultz, P. G. J. Biol. Chem.
010, 285, 11039. (c) Maza, J. C.; Jacobs, T. H.; Uthappa, D. M.;
Young, D. D. Synlett 2016, 27, e6.
3) For general reviews, see: (a) Vogt, H.; Bras
Chem. 2007, 5, 406. (b) Perdih, A.; Sollner Dolenc, M. Curr. Org.
Chem. 2007, 11, 801. (c) Stevenazzi, A.; Marchini, M.; Sandrone, G.;
Vergani, B.; Lattanzio, M. Bioorg. Med. Chem. Lett. 2014, 24, 5349.
−1
.
C′‑D
−1
2
worth of stabilizing energy in preceding C′. The existence of a distinct
orbital in the HOMO of TS
provides further evidence for this crucial interaction. See the SI for the
illustration of the respective MO.
connecting all three atoms (CC-N)
C′‑D
(
̈
e, S. Org. Biomol.
(
́
4) For general reviews, see: (a) Guillena, G.; Ramon, D. J.
Tetrahedron: Asymmetry 2006, 17, 1465. (b) Marigo, M.; Jørgensen, K.
A. Chem. Commun. 2006, 2001. (c) Vilaivan, T.; Bhanthumnavin, W.
Molecules 2010, 15, 917. (d) Smith, A. M. R.; Hii, K. K. Chem. Rev.
2011, 111, 1637. (e) Zhou, F.; Lia, F.-M.; Yu, J.-S.; Zhou, J. Synthesis
2014, 46, 2983. (f) Maji, B.; Yamamoto, H. Bull. Chem. Soc. Jpn. 2015,
88, 753.
(
5) For selected examples, see: (a) Regitz, M. Angew. Chem., Int. Ed.
Engl. 1967, 6, 733. (b) Weininger, S. J.; Kohen, S.; Mataka, S.; Koga,
G.; Anselme, J. P. J. Org. Chem. 1974, 39, 1591. (c) Miura, T.;
Morimoto, M.; Murakami, M. Org. Lett. 2012, 14, 5214. (d) Scarpino
Schietroma, D. M.; Monaco, M. R.; Bucalossi, V.; Walter, P. E.;
Gentili, P.; Bella, M. Org. Biomol. Chem. 2012, 10, 4692. (e) Fu, J.-Y.;
Wang, Q.-L.; Peng, L.; Gui, Y.-Y.; Wang, F.; Tian, F.; Xu, X.-Y.; Wang,
L.-X. Eur. J. Org. Chem. 2013, 2013, 2864. (f) Vita, M. V.; Waser, J.
Org. Lett. 2013, 15, 3246. (g) Shevchenko, G. A.; Pupo, G.; List, B.
Synlett 2015, 26, 1413. (h) Sandoval, D.; Samoshin, A. V.; Read de
̈
Alaniz, J. Org. Lett. 2015, 17, 4514. (i) Otvo
̈
́
s, S. B.; Szloszar, A.;
Mandity, I. M.; Fulop, F. Adv. Synth. Catal. 2015, 357, 3671. (j) Yang,
X.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 3205. (k) Miles, D. H.;
Guasch, J.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 7632.
́
̈
̈
(
5
l) Ramakrishna, I.; Sahoo, H.; Baidya, M. Chem. Commun. 2016,
2, 3215.
6) Tokumasu, K.; Yazaki, R.; Ohshima, T. J. Am. Chem. Soc. 2016,
38, 2664.
7) For selected recent examples, see: (a) Tian, J.-S.; Ng, K. W. J.;
Wong, J. R.; Loh, T.-P. Angew. Chem., Int. Ed. 2012, 51, 9105.
(
1
(
(
(
b) Lamani, M.; Prabhu, K. R. Chem. - Eur. J. 2012, 18, 14638.
c) Evans, R. W.; Zbieg, J. R.; Zhu, S.; Li, W.; MacMillan, D. W. C. J.
Am. Chem. Soc. 2013, 135, 16074. (d) Jiang, Q.; Xu, B.; Zhao, A.; Jia,
J.; Liu, T.; Guo, C. J. Org. Chem. 2014, 79, 8750. (e) Jia, W.-G.; Li, D.-
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX