D
X. Hong et al.
Letter
Synlett
and diazo compounds under mild conditions.17 Two new C–
S bonds were formed simultaneously at one carbon. Various
common functional groups such as fluoride, chloride, bro-
mide, methoxy, trifluoromethyl were compatible. When a
chiral ligand was employed, moderate enantioselectivity
was observed. Further extension of the scope of the reac-
tion to other types of carbene precursors is under way in
our laboratory.
2016, 22, 12270. (e) Zhang, Z.; Sheng, Z.; Yu, W.; Wu, G.; Zhang,
R.; Chu, W.-D.; Zhang, Y.; Wang, J. Nat. Chem. 2017, 9, 970.
(f) Chen, T.; You, Y.; Weng, Z. J. Fluorine Chem. 2018, 216, 43.
(6) Selected recent reviews for carbene from diazo compound
insertion into C–H and X–H bonds, see: (a) Davies, H. M. L.;
Hedley, S. J. Chem. Soc. Rev. 2007, 36, 1109. (b) Doyle, M. P.;
Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
(c) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012, 45, 1365.
(7) Brookhart, M.; Studabaker, W. B. Chem. Rev. 1987, 87, 411.
(8) (a) Aggarwal, V.; Winn, C. L. Acc. Chem. Res. 2004, 37, 611.
(b) Zhang, Y.; Wang, J. Coord. Chem. Rev. 2010, 254, 941.
(9) Selected recent examples of insertion of carbenoid species into
X–Y bonds (X, Y = C, N, O, Si, S, etc.), see: (a) Zheng, Y.; Bian, R.;
Zhang, X.; Yao, R.; Qiu, L.; Bao, X.; Xu, X. Eur. J. Org. Chem. 2016,
3872. (b) Zhang, H.; Wang, H.; Yang, H.; Fu, H. Org. Biomol.
Chem. 2015, 13, 6149. (c) Li, H.; Wang, L.; Zhang, Y.; Wang, J.
Angew. Chem. Int. Ed. 2012, 51, 2943. (d) Li, H.; Shangguan, X.;
Zhang, Z.; Huang, S.; Zhang, Y.; Wang, J. Org. Lett. 2014, 16, 448.
(e) Liu, Z.; Tan, H.; Fu, T.; Xia, Y.; Qiu, D.; Zhang, Y.; Wang, J.
J. Am. Chem. Soc. 2015, 137, 12800. (f) Ganapathy, D.; Sekar, G.
Org. Lett. 2014, 16, 3856. (g) Arunprasath, D.; Muthupandi, P.;
Sekar, G. Org. Lett. 2015, 17, 5448.
Funding Information
The authors gratefully acknowledge the financial support from Na-
tional Natural Science Foundation of China (21572258) and the Stra-
tegic Priority Research Program of the Chinese Academy of Sciences
(XDB20000000).
N
ati
o
n
a
lNaturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
C
h
i
n
a
(2
1
5
7
2
2
5
8)
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
(10) Kawamura, Y.; Akitomo, K.; Oe, M.; Horie, T.; Tsukayama, M.
Tetrahedron Lett. 1997, 38, 8989.
(11) Hamagichi, M.; Misumi, T.; Oshima, T. Tetrahedron Lett. 1998,
39, 7113.
References
(12) Zheng, Y.; Bian, R.; Zhang, X.; Yao, R.; Qiu, L.; Bao, X.; Xu, X. Eur.
J. Org. Chem. 2016, 3872.
(13) Arunprasath, D.; Sekar, G. Adv. Synth. Catal. 2017, 359, 698.
(14) Rao, C.; Mai, S.; Song, Q. Chem. Commun. 2018, 54, 5964.
(15) Yuan, H.; Nuligonda, T.; Gao, H.; Tung, C.-H.; Xu, Z. Org. Chem.
Front. 2018, 5, 1371.
(1) (a) Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525.
(b) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
(c) Landelle, G.; Panossian, A.; Leroux, F. R. Curr. Top. Med. Chem.
2014, 14, 941.
(2) Sessler, C. D.; Rahm, M.; Becker, S.; Goldberg, J. M.; Wang, F.;
Lippard, S. J. J. Am. Chem. Soc. 2017, 139, 9325.
(16) (a) Shao, X.-X.; Xu, C.-F.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48,
1227. (b) Shao, X.-X.; Wang, X.-Q.; Yang, T.; Long, Lu L.; Shen, Q.
Angew. Chem. Int. Ed. 2013, 52, 3457. (c) Wang, X.-Q.; Tao, Y. T.;
Xiaolin, C. X.; Shen, Q. Angew. Chem. Int. Ed. 2013, 52, 12860.
(d) Xu, C.-F.; Ma, B.-Q.; Shen, Q. Angew. Chem. Int. Ed. 2014, 53,
9316. (e) Zhu, D.-H.; Gu, Y.; Lu, L.; Shen, Q. J. Am. Chem. Soc.
2015, 137, 10547. (f) Wu, J.; Gu, Y.; Leng, X.-B.; Shen, Q. Angew.
Chem. Int. Ed. 2015, 54, 7648. (g) Zhu, D.-H.; Shao, X.-X.; Hong,
X.; Lu, L.; Shen, Q. Angew. Chem. Int. Ed. 2016, 55, 15807.
(17) General procedure for copper-catalyzed carbene insertion of
disulfides (3a–e, 3g–o, 3r–z). In a flame-dried glass tube, under
an argon atmosphere, a mixture of disulfide (0.3 mmol) and
Cu(OTf)2 (2.7 mg, 0.0075 mmol, 2.5 mol%) was added to DCE
(0.6 mL) at room temperature. Diazo compound (0.3 mmol) was
then added in one portion. The mixture was stirred for 1 h and
then additional diazo compound (0.3 mmol) was added. The
mixture was stirred for another 1 h and subsequently filtered
through a short plug of Celite and the solvent was evaporated
under reduced pressure. The residue was purified by flash chro-
matography (EtOAc/PE) to give the product.
(3) Selected recent reviews for trifluoromethylthiolation/difluoro-
methylthiolation, see: (a) Leroux, F.; Jeschke, P.; Schlosser, M.
Chem. Rev. 2005, 105, 827. (b) Manteau, B.; Pazenok, S.; Vors, J.-
P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140. (c) Landelle, G.;
Panossian, A.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. Beilstein
J. Org. Chem. 2013, 9, 2476. (d) Ni, C.; Hu, M.; Hu, J. Chem. Rev.
2015, 115, 765. (e) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem.
Rev. 2015, 115, 731. (f) Chachignon, H.; Cahard, D. Chin. J. Chem.
2016, 34, 445. (g) Xiong, H.-Y.; Pannecoucke, X.; Besset, T. Chem.
Eur. J. 2016, 22, 16734. (h) Zheng, H.; Huang, Y.; Weng, Z. Tetra-
hedron Lett. 2016, 57, 1397. (i) Zhang, P.; Lu, L.; Shen, Q. Acta
Chim. Sin. 2017, 75, 744.
(4) Selected recent reviews for transformation of diazo compounds,
see: (a) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091.
(b) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. (c) Zhu,
S.-F.; Zhou, Q.-L. Nat. Sci. Rev. 2014, 1, 580. (d) Ford, A.; Miel, H.;
Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem.
Rev. 2015, 115, 9981. (e) Candeias, N. R.; Paterna, R.; Gois, P. M.
P. Chem. Rev. 2016, 116, 2937. (f) Xia, Y.; Wang, J. Chem. Soc. Rev.
2017, 46, 2306. (g) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117,
13810. (h) Wang, X.; Wang, X.; Wang, J. Tetrahedron 2019, 75,
949.
Ethyl 2-((Difluoromethyl)thio)-2-((4-fluorophenyl)thio)-2-
phenylacetate (3a). Rf = 0.5 (EtOAc/PE, 1:20); yield: 76 mg
(68%); yellow oil. 1H NMR (400 MHz, CDCl3, 293 K, TMS): =
7.33–7.20 (m, 5 H), 7.17–7.13 (m, 2 H), 6.93 (dd, J = 56.2,
54.1 Hz, 1 H), 6.89 (t, J = 8.6 Hz, 2 H), 4.35–4.23 (m, 2 H), 1.27 (t,
J = 7.1 Hz, 3 H). 19F NMR (375 MHz, CDCl3): = –92.72 (dd, J =
252.6, 56.2 Hz, 1 F), –95.60 (dd, J = 252.7, 54.3 Hz, 1 F), –109.87
(s, 1 F). 13C NMR (100.7 MHz, CDCl3): = 169.4, 164.2 (d, J =
251.6 Hz), 139.6 (d, J = 8.8 Hz), 136.3, 128.8, 128.3, 127.6, 124.4
(d, J = 3.2 Hz), 122.7 (t, J = 269.9 Hz), 115.7 (d, J = 21.9 Hz), 70.6,
63.5, 13.7. IR (KBr): max = 2984, 1728, 1589, 1489, 1446, 1232,
(5) Selected examples for the use of diazo substrates in the prepara-
tion of trifluoromethylthiolated compounds: (a) Hu, M.; Rong,
J.; Miao, W.; Ni, C.; Han, Y.; Hu, J. Org. Lett. 2014, 16, 2030.
(b) Wang, X.; Zhou, Y.; Ji, G.; Wu, G.; Li, M.; Zhang, Y.; Wang, J.
Eur. J. Org. Chem. 2014, 3093. (c) Lefebvre, Q.; Fava, E.;
Nikolaienko, P.; Rueping, M. Chem. Commun. 2014, 50, 6617.
(d) Matheis, C.; Krause, T.; Bragoni, V.; Goossen, L. J. Chem. Eur. J.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–E