Organic Process Research & Development
Article
Chem. 2008, 51, 1145−1149. (b) Nomura, S.; Sakamaki, S.; Hongu,
M.; Kawanishi, E.; Koga, Y.; Sakamoto, T.; Yamamoto, Y.; Ueta, K.;
Kimata, H.; Nakayama, K.; Tsuda-Tsukimoto, M. Discovery of
Canagliflozin, a Novel C-Glucoside with Thiophene Ring, as Sodium-
Dependent Glucose Cotransporter 2 Inhibitor for the Treatment of
Type 2 Diabetes Mellitus. J. Med. Chem. 2010, 53, 6355−6360.
(c) Wang, X.-J.; Zhang, L.; Byrne, D.; Nummy, L.; Weber, D.;
Krishnamurthy, D.; Yee, N.; Senanayake, C. H. Efficient Synthesis of
Empagliflozin, an Inhibitor of SGLT-2, Utilizing an AlCl3-Promoted
Silane Reduction of a β-Glycopyranoside. Org. Lett. 2014, 16, 4090−
4093. (d) Bernhardson, D.; Brandt, T. A.; Hulford, C. A.; Lehner, R.
S.; Preston, B. R.; Price, K.; Sagal, J. F.; St. Pierre, M. J.; Thompson, P.
H.; Thuma, B. Development of an Early-Phase Bulk Enabling Route
to Sodium-Dependent Glucose Cotransporter 2 Inhibitor Ertugli-
flozin. Org. Process Res. Dev. 2014, 18, 57−65. (e) Bowles, P.; Brenek,
Harris, A. L.; Smith, M.; Thompson, A. Y.; Xiong, W.; Mseeh, F.;
Bruce, D. J.; Diaz, D.; Gopinathan, S.; Li, L.; O’Neill, E.; Thiel, M.;
Wilson, A. G. E.; Carson, K. G.; Powell, D. R.; Rawlins, D. B.
Discovery of LX2761, a Sodium-Dependent Glucose Cotransporter 1
(SGLT1) Inhibitor Restricted to the Intestinal Lumen, for the
Treatment of Diabetes. J. Med. Chem. 2017, 60, 710−721.
(6) Some milder approaches have been reported. For Friedel−Crafts
benzylations, see: (a) Mertins, K.; Iovel, I.; Kischel, J.; Zapf, A.; Beller,
M. Gold-Catalyzed Benzylation of Arenes and Heteroarenes. Adv.
̈
Synth. Catal. 2006, 348, 691−695. (b) Schafer, G.; Bode, J. W.
Friedel-Crafts Benzylation of Activated and Deactivated Arenes.
Angew. Chem., Int. Ed. 2011, 50, 10913−10916. For Barbier−
Grignard-type benzylations, see: (c) Zhou, F.; Li, C.-J. The Barbier−
Grignard-Type Arylation of Aldehydes using Unactivated Aryl Iodides
in Water. Nat. Commun. 2014, 5, 4254. (d) Bering, L.; Jeyakumar, K.;
Antonchick, A. P. Metal-Free C−O Bond Functionalization: Catalytic
Intramolecular and Intermolecular Benzylation of Arenes. Org. Lett.
2018, 20, 3911−3914.
́
S. J.; Caron, S.; Do, N. M.; Drexler, M. T.; Duan, S.; Dube, P.;
Hansen, E. C.; Jones, B. P.; Jones, K. N.; Ljubicic, T. A.; Makowski, T.
W.; Mustakis, J.; Nelson, J. D.; Olivier, M.; Peng, Z.; Perfect, H. H.;
Place, D. W.; Ragan, J. A.; Salisbury, J. J.; Stanchina, C. L.;
Vanderplas, B. C.; Webster, M. E.; Weekly, R. M. Commercial Route
Research and Development for SGLT2 Inhibitor Candidate
Ertugliflozin. Org. Process Res. Dev. 2014, 18, 66−81. (f) Ohtake, Y.;
Sato, T.; Kobayashi, T.; Nishimoto, M.; Taka, N.; Takano, K.;
Yamamoto, K.; Ohmori, M.; Yamaguchi, M.; Takami, K.; Yeu, S.-Y.;
Ahn, K.-H.; Matsuoka, H.; Morikawa, K.; Suzuki, M.; Hagita, H.;
Ozawa, K.; Yamaguchi, K.; Kato, M.; Ikeda, S. Discovery of
Tofogliflozin, a Novel C-Arylglucoside with an O-Spiroketal Ring
System, as a Highly Selective Sodium Glucose Cotransporter 2
(SGLT2) Inhibitor for the Treatment of Type 2 Diabetes. J. Med.
Chem. 2012, 55, 7828−7840. (g) Imamura, M.; Nakanishi, K.; Suzuki,
T.; Ikegai, K.; Shiraki, R.; Ogiyama, T.; Murakami, T.; Kurosaki, E.;
Noda, A.; Kobayashi, Y.; Yokota, M.; Koide, T.; Kosakai, K.; Ohkura,
Y.; Takeuchi, M.; Tomiyama, H.; Ohta, M. Discovery of Ipragliflozin
(ASP1941): A Novel C-Glucoside with Benzothiophene Structure as
a Potent and Selective Sodium Glucose Co-transporter 2 (SGLT2)
Inhibitor for the Treatment of Type 2 Diabetes Mellitus. Bioorg. Med.
Chem. 2012, 20, 3263−3279. (h) Kakinuma, H.; Oi, T.; Hashimoto-
Tsuchiya, Y.; Arai, M.; Kawakita, Y.; Fukasawa, Y.; Iida, I.; Hagima,
N.; Takeuchi, H.; Chino, Y.; Asami, J.; Okumura-Kitajima, L.; Io, F.;
Yamamoto, D.; Miyata, N.; Takahashi, T.; Uchida, S.; Yamamoto, K.
(1S)-1,5-Anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphen-
yl]-1-thio-D-glucitol (TS-071) is a Potent, Selective Sodium-Depend-
ent Glucose Cotransporter 2 (SGLT2) Inhibitor for Type 2 Diabetes
Treatment. J. Med. Chem. 2010, 53, 3247−3261.
(4) (a) Goodwin, N. C.; Mabon, R.; Harrison, B. A.; Shadoan, M.
K.; Almstead, Z. Y.; Xie, Y.; Healy, J.; Buhring, L. M.; DaCosta, C. M.;
Bardenhagen, J.; Mseeh, F.; Liu, Q.; Nouraldeen, A.; Wilson, A. G. E.;
Kimball, S. D.; Powell, D. R.; Rawlins, D. B. Novel L-Xylose
Derivatives as Selective Sodium-Dependent Glucose Cotransporter 2
(SGLT2) Inhibitors for the Treatment of Type 2 Diabetes. J. Med.
Chem. 2009, 52, 6201−6204. (b) Powell, D. R.; Smith, M.; Greer, J.;
Harris, A.; Zhao, S.; DaCosta, C.; Mseeh, F.; Shadoan, M. K.; Sands,
A.; Zambrowicz, B.; Ding, Z. M. LX4211 Increases Serum Glucagon-
Like Peptide 1 and Peptide YY Levels by Reducing Sodium/Glucose
Cotransporter 1 (SGLT1)−Mediated Absorption of Intestinal
Glucose. J. Pharmacol. Exp. Ther. 2013, 345, 250−259. (c) Lapuerta,
P.; Zambrowicz, B.; Strumph, P.; Sands, A. Development of
Sotagliflozin, a Dual Sodium-dependent Glucose Transporter 1/2
Inhibitor. Diabetes Vasc. Dis. Res. 2015, 12, 101−110. (d) Chen, J.;
Nyamweya, N. N.; Ong, K. K. H. Compositions Comprising and
Methods of Using Inhibitors of Sodium-Glucose Co-Transporters 1
and 2, US 2016/0296547 A1, Oct 13, 2016. (e) Zhao, M. M.; De
Paul, S. M.; Perlberg, A. Solid Forms of (2S,3R,4R,5S,6R)-2-(4-
Chloro-3-(4-ethoxybenzyl)phenyl)-6-(methylthio)tetrahydro-2H-
pyran-3,4,5-triol and Methods of Their Use. US8217156B2, 2009.
(5) (a) Carson, K. G.; Goodwin, N. C.; Harrison, B. A.; Rawlins, D.
B.; Strobel, E.; Zambrowicz, B. Inhibitors of Sodium Glucose
Cotransporter 1. U.S. Patent 9,688,710 B2, June 27, 2017.
(b) Goodwin, N. C.; Ding, Z.-M.; Harrison, B. A.; Strobel, E. D.;
(7) For selected examples of diarylmethane synthesis using other
cross-coupling strategies, see: Negishi-type: (a) Duplais, C.;
Krasovskiy, A.; Wattenberg, A.; Lipshutz, B. H. Cross-couplings
Between Benzylic and Aryl Halides “On Water”: Synthesis of
Diarylmethanes. Chem. Commun. 2010, 46, 562−564. (b) Bedford,
R. B.; Huwe, M.; Wilkinson, M. C. Iron-catalysed Negishi Coupling of
Benzylhalides and Phosphates. Chem. Commun. 2009, 600−602.
Hiyama-type: (c) Srimani, D.; Bej, A.; Sarkar, A. Palladium
Nanoparticle Catalyzed Hiyama Coupling Reaction of Benzyl Halides.
J. Org. Chem. 2010, 75, 4296−4299. Kumada-related: (d) Kofink, C.
C.; Knochel, P. Synthesis of Functionalized Diarylmethanes via a
Copper-Catalyzed Cross-Coupling of Arylmagnesium Reagents with
Benzylic Phosphates. Org. Lett. 2006, 8, 4121−4124. (e) Yu, D.-G.;
Wang, X.; Zhu, R.-Y.; Luo, S.; Zhang, X.-B.; Wang, B.-Q.; Wang, L.;
Shi, Z.-J. Direct Arylation/Alkylation/Magnesiation of Benzyl
Alcohols in the Presence of Grignard Reagents via Ni-, Fe-, or Co-
Catalyzed sp3 C−O Bond Activation. J. Am. Chem. Soc. 2012, 134,
14638−14641. Other: (f) Chen, C.-R.; Zhou, S.; Biradar, D. B.; Gau,
H.-M. Extremely Efficient Cross-Coupling of Benzylic Halides with
Aryltitanium Tris(isopropoxide) Catalyzed by Low Loadings of a
Simple Palladium(II) Acetate/Tris(p-tolyl)phosphine System. Adv.
Synth. Catal. 2010, 352, 1718−1727. (g) Zhao, F.; Tan, Q.; Xiao, F.;
Zhang, S.; Deng, G.-J. Palladium-Catalyzed Desulfitative Cross-
Coupling Reaction of Sodium Sulfinates with Benzyl Chlorides.
Org. Lett. 2013, 15, 1520−1523. (h) Tellis, J. C.; Primer, D. N.;
Molander, G. A. Single-electron Transmetalation in Organoboron
Cross-coupling by Photoredox/Nickel Dual Catalysis. Science 2014,
345, 433−436.
(8) For a similar thioalkylation of anomeric acetates, see: Ibatullin, F.
̈
M.; Shabalin, K. A.; Janis, J. V.; Shavva, A. G. Reaction of 1,2-trans-
Glycosyl Acetates with Thiourea: A New Entry to 1-Thiosugars.
Tetrahedron Lett. 2003, 44, 7961−7964.
(9) For a review of palladium activation of aryl chlorides, see:
(a) Littke, A. F.; Fu, G. C. Palladium-Catalyzed Coupling Reactions
of Aryl Chlorides. Angew. Chem., Int. Ed. 2002, 41, 4176−4211. For
representative borylations of hindered substrates, see: (b) Ishiyama,
T.; Ishida, K.; Miyaura, N. Synthesis of Pinacol Arylboronates via
Cross-coupling Reaction of Bis(pinacolato)diboron with Chloroar-
enes Catalyzed by Palladium(0)-Tricyclohexylphosphine Complexes.
Tetrahedron 2001, 57, 9813−9816. (c) Kawamorita, S.; Ohmiya, H.;
Iwai, T.; Sawamura, M. Palladium-Catalyzed Borylation of Sterically
Demanding Aryl Halides with a Silica-Supported Compact Phosphane
Ligand. Angew. Chem., Int. Ed. 2011, 50, 8363−8366. (d) Molander,
G. A.; Trice, S. L. J.; Dreher, S. D. Palladium-Catalyzed, Direct
Boronic Acid Synthesis from Aryl Chlorides: A Simplified Route to
Diverse Boronate Ester Derivatives. J. Am. Chem. Soc. 2010, 132,
17701−17703. (e) Iwai, T.; Harada, T.; Tanaka, R.; Sawamura, M.
Silica-supported Tripod Triarylphosphines: Application to Palladium-
catalyzed Borylation of Chloroarenes. Chem. Lett. 2014, 43, 584−586.
(10) (a) Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Palladium-
Catalyzed Borylation of Aryl Chlorides: Scope, Applications, and
O
Org. Process Res. Dev. XXXX, XXX, XXX−XXX