generality of those reactions is, however, still limited. In
particular, the reaction with primary alkylamines resulted
only in the formation of the diallylation product18,19 because
of the higher nucleophilicity of the monoallylation product
compared to that of the substrate. Herein, we report a direct
conversion of allylic alcohols to allylamines catalyzed by 1
mol % of Pt-DPEphos complex with broad substrate general-
ity. The use of the large bite-angle ligand DPEphos is
essential for obtaining high catalyst activity. Moreover, a
sterically congested active site created by the large bite-angle
ligand led to the selective monoallylation of primary alkyl-
amines.
Scheme 1
A rate-determining step of the above-mentioned Pd-
catalyzed substitution reactions of allylic alcohol is the
activation of the hydroxyl group to form a π-allyl complex.
Based on the fact that the Pt-O bond is stronger than the
Pd-O bond,23 we anticipated that the platinum complex
would be a good candidate for a direct amination catalyst
for allylic alcohols. Thus, using Pt(cod)Cl2 as a metal source,
we first examined various phosphine ligands in the reaction
of allyl alcohol (1a) and aniline (2a). No reaction proceeded
in the absence of a phosphine ligand (Table 1, entry 1) and
of allylic alcohols with amines, which produces the desired
allylamines together with water as the sole coproduct, is
highly desired (1 f 4).6
Due to the poor leaving ability of the hydroxyl group, the
precedented direct aminations of allylic alcohols require
stoichiometric or catalytic amounts of an activator, such as
PPh3-DEAD,7 As2O3,8 B2O3,9 BF3‚Et2O,10 BEt3,11 BPh3,12,13
SnCl2,13 Ti(O-i-Pr)4,14 and CO2,15 including an efficient
enantioselective variant.16 Recently, palladium- and gold-
catalyzed direct aminations of allylic alcohols without the
use of an activator were developed by the research groups
of Ozawa and Yoshifuji,17 Ikariya,18 Shinokubo and Oshi-
ma,19 Le Floch,20 and Liu,21 realizing a highly atom
economical synthetic process for allylamines.22 The substrate
Table 1. Ligand Effects on Pt-Catalyzed Direct Amination of
Allyl Alcohol (1a)a
(6) For a review, see: Muzart, J. Eur. J. Org. Chem. 2007, 3077 and
references cited therein.
(7) Lumin, S.; Falck, J. R.; Capdevila, J.; Karara, A. Tetrahedron Lett.
1992, 33, 2091.
(8) Lu, X.; Lu, L.; Sun, J. J. Mol. Catal. 1987, 41, 245.
(9) Lu, X.; Jiang, X.; Tao, X. J. Organomet. Chem. 1988, 344, 109.
(10) Tsay, S.; Lin, L. C.; Furth, P. A.; Shum, C. C.; King, D. B.; Yu, S.
F.; Chen, B.; Hwu, J. R. Synthesis 1993, 329.
(11) (a) Kimura, M.; Tomizawa, T.; Horino, Y.; Tanaka, S.; Tamaru, Y.
Tetrahedron Lett. 2000, 41, 3627. (b) Kimura, M.; Horino, Y.; Mukai, R.;
Tanaka, S.; Tamaru, Y. J. Am. Chem. Soc. 2001, 123, 10401. (c) Kimura,
M.; Futamata, M.; Shibata, K.; Tamaru, Y. Chem. Commun. 2003, 234.
(12) Stary, I.; Stara´, I. G.; Kocovsky, P. Tetrahedron Lett. 1993, 34,
179.
(13) (a) Masuyama, Y.; Takahara, J. P.; Kurusu, Y. J. Am. Chem. Soc.
1988, 110, 4473. (b) Masuyama, Y.; Kagawa, M.; Kurusu, Y. Chem. Lett.
1995, 1121.
(14) (a) Itoh, K.; Hamaguchi, N.; Miura, M.; Nomura, M. J. Chem. Soc.,
Perkin Trans. 1 1992, 2833. (b) Satoh, T.; Ikeda, M.; Miura, M.; Nomura,
M. J. Org. Chem. 1997, 62, 4877. (c) Yang, S.-C.; Hung, C.-W. J. Org.
Chem. 1999, 64, 5000. (d) Yang, S.-C.; Tsai, Y.-C.; Shue, Y.-J. Organo-
metallics 2001, 20, 5326. (e) Shue, Y.-J.; Yang, S.-C.; Lai, H.-C.
Tetrahedron Lett. 2003, 44, 1481.
bite-angle
(deg)b
yield
(%)d
entry
ligand (x)
1
2
3
4
5
6
7
8
9
-
0
11
7
36
0
1
0
9
29
4
PPh3 (4.0)
P(OPh)3 (4.0)
P(2-furyl)3 (4.0)
DPPE (2.0)
(C6F5)2PCH2CH2P(C6H5)2 (2.0)
DPPP (2.0)
Ph2P(CH2)5PPh2 (2.0)
DPPF (2.0)
BINAP (2.0)
DPEphos (2.0)
Xantphos (2.0)
85
90
90
93
10
11
12
104 (106)c
108 (108)c
91
86
a 1.0 mmol scale, dioxane (0.5 mL). b Bite-angle of Pd complex.24 c Bite-
angle of (ligand)Pt(π-allyl)Cl complex optimized with the B3LYP function
(LANL2DZ for Pt and 6-31G** for others).25 d Determined by GC analysis.
(15) Sakamoto, M.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn.
1996, 69, 1065.
(16) Yamashita, Y.; Gopalarathnam, A.; Hartwig, J. F. J. Am. Chem.
Soc. ASAP.
(17) (a) Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami,
T.; Yoshifuji, M. J. Am. Chem. Soc. 2002, 124, 10968. (b) Ozawa, F.;
Ishiyama, T.; Yamamoto, S.; Kawagishi, S.; Murakami, H.; Yoshifuji, M.
Organometallics 2004, 23, 1698.
(18) Kayaki, Y.; Koda, T.; Ikariya, T. J. Org. Chem. 2004, 69, 2595.
(19) Kinoshita, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 4085.
(20) (a) Piechaczyk, O.; Doux, M.; Ricard, L.; Le Floch, P. Organome-
tallics 2005, 24, 124. (b) Piechaczyk, O.; Thoumazet, C.; Jean, Y.; Le Floch,
P. J. Am. Chem. Soc. 2006, 128, 14306. (c) Mora, G.; Deschamps, B.; van
Zutphen, S.; Le, Goff, X. F.; Ricard, L.; Le Floch, P. Organometallics 2007,
26, 1846.
the use of monodentate ligands gave unsatisfactory results
(entries 2-4), in contrast to the reports that Pd-monophos-
phine ligand complexes showed good catalyst activity.18,19
Commonly used diphosphine ligands such as DPPE, DPPP,
DPPF, and BINAP also led to low yields (entries 5-10).
(21) Guo, S.; Song, F.; Liu, Y. Synlett 2007, 964.
(22) Very recently, efficient bismuth-catalyzed direct substitution of
allylic alcohols with sulfonamides, carbamates, and carboxamides via
carbenium intermediate was reported, see: Qin, H.; Yamagiwa, N.;
Matsunaga, S.; Masakatsu, S. Angew. Chem., Int. Ed. 2007, 46, 409.
(23) Pedley, J. B.; Marshall, E. M. J. Phys. Chem. Ref. Data 1983, 12,
967.
3372
Org. Lett., Vol. 9, No. 17, 2007