The Journal of Organic Chemistry
Article
1H NMR analysis of the product after chromatography showed the
presence of a phenolic impurity, the product was dissolved in EtOAc
and washed twice with 10% aq NaOH, water, and brine and
subsequently dried over Na2SO4. This procedure afforded the pure
product 4a as an off-white solid in 95% isolated yield (475 mg, 1.00
mmol). The optical purity of 4a was determined to be 99% ee by chiral
HPLC analysis. Complete characterization details for 4a can be found
(14) (a) Beno, B. R.; Houk, K. N.; Singleton, D. A. J. Am. Chem. Soc.
1996, 118, 9984−9985. (b) Singleton, D. A.; Merrigan, S. R.; Liu, J.;
Houk, K. N. J. Am. Chem. Soc. 1997, 119, 3385−3386. (c) DelMonte,
A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.; Singleton, D. A.;
Strassner, T.; Thomas, A. A. J. Am. Chem. Soc. 1997, 119, 9907−9908.
(d) Keating, A. E.; Merrigan, S. R.; Singleton, D. A.; Houk, K. N. J.
Am. Chem. Soc. 1999, 121, 3933−3938. (e) Frantz, D. E.; Singleton, D.
A. J. Am. Chem. Soc. 2000, 122, 3288−3295. (f) Zhu, H.; Clemente, F.
R.; Houk, K. N.; Meyer, M. P. J. Am. Chem. Soc. 2009, 131, 1632−
1633.
(15) (a) Frantz, D. E.; Singleton, D. A.; Snyder, J. P. J. Am. Chem. Soc.
1997, 119, 3383−3384. (b) Singleton, D. A.; Schulmeier, B. E. J. Am.
Chem. Soc. 1999, 121, 9313−9317.
(16) For the first report of this modified procedure to measure KIEs
by analysis of product, see: Vetticatt, M. J.; Singleton, D. A. Org. Lett.
2012, 14, 2370−2373 The yields, diastereoselectivity, and enantiose-
lectivity of aziridine 4a obtained under these modified conditions are
essentially identical to those obtained using the optimized reaction
stoichiometry of 1:1.1 (1a:2a).
in a previous report from our group.30 Spectral data for 4a: H NMR
1
(CDCl3, 500 MHz) δ 0.99 (t, 3H, J = 7.1 Hz), 2.21 (s, 6H), 2.27 (s,
6H), 2.59 (d, 1H, J = 6.9 Hz), 3.14 (d, 1H, J = 6.9 Hz), 3.63 (s, 3H),
3.69 (s, 3H), 3.69 (s, 1H), 3.93−3.96 (m, 2H), 7.13 (s, 2H), 7.18−
7.27 (m, 5H), 7.39 (d, 2H, J = 6.9 Hz); 13C NMR (CDCl3, 125 MHz)
δ 10.0, 12.2, 12.2, 42.5, 44.3, 55.3, 55.4, 56.4, 73.0, 123.3, 123.6, 123.7,
123.9, 123.9, 126.5, 126.6, 131.5, 134.0, 134.2, 152.2, 152.3, 163.8.
ASSOCIATED CONTENT
* Supporting Information
■
S
Computational and spectroscopic details and discussions,
relevant pdb files, and coordinates of all calculated structures.
This material is available free of charge via the Internet at
(17) See Supporting Information for method used for calculation of
KIEs from the numerical integrations.
(18) See Supporting Information for KIEs of other carbon atoms and
representative NMR spectra.
AUTHOR INFORMATION
Corresponding Author
(19) Johnston and co-workers (ref 11) have published indirect
evidence that the first step involving addition of the diazo compound
to the imine is nonreversible under Brønsted acid catalysis with triflic
acid. However, this reaction involves an activated imine derived from
methyl glyoxylate; thus, there may very well be a mechanism change
for this reaction.
■
Notes
(20) The KIE experiments were performed using (R)-VANOL, while
all calculations were performed using (S)-VANOL.
The authors declare no competing financial interest.
(21) (a) Svensson, M.; Humbel, S.; Morokuma, K. J. Chem. Phys.
1996, 105, 3654−3661. (b) Vreven, T.; Morokuma, K. J. Comput.
ACKNOWLEDGMENTS
This work was supported by the National Institute of General
Medical Sciences (GM 094478).
■
́
Chem. 2000, 21, 1419−1432. (c) Dapprich, S.; Komaromi, I.; Byun, K.
S.; Morokuma, K.; Frisch, M. J. J. Mol. Struct. 1999, 461, 1−21.
(22) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
REFERENCES
■
(1) (a) Mukherjee, M.; Gupta, A. K.; Lu, Z.; Zhang, Y.; Wulff, W. D.
J. Org. Chem. 2010, 75, 5643−5660 and ref 3 therein. (b) Hu, G.;
Gupta, A. K.; Huang, R. H.; Mukherjee, M.; Wulff, W. D. J. Am. Chem.
Soc. 2010, 132, 14669−14675. (c) Gupta, A. K.; Mukherjee, M.; Hu,
G.; Wulff, W. D. J. Org. Chem. 2012, 77, 7932−7944.
(2) Williams, A. L.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126,
1612−1613.
(3) Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11, 2445−2447.
(4) (a) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc.
2005, 127, 9360−9361. (b) Hashimoto, T.; Maruoka, K. J. Am. Chem.
Soc. 2007, 129, 10054−10055.
̈
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
(5) Hashimoto, T.; Uchiyama, N.; Maruoka, K. J. Am. Chem. Soc.
2008, 130, 14380−14381.
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
revision A.1; Gaussian, Inc.: Wallingford, CT, 2009.
(6) Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13100−
(23) See Figure 2 for the numbering scheme for the boroxinate
oxygen atoms.
(24) Several other higher energy possibilities that lead to the same
facial selectivity have been evaluated and are given in the Supporting
Information as TS1a−d.
(25) A similar mechanism was proposed for a reaction catalyzed by
dithiophosphoric acids. Shapiro, N. D.; Rauniyar, V.; Hamilton, G. L.;
Wu, J.; Toste, F. D. Nature 2011, 470, 245−250.
(26) (a) Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502−
16513. (b) Anisimov, V.; Paneth, P. J. Math. Chem. 1999, 26, 75−86.
The KIE predictions were made by comparison of the vibrational
frequencies of the relevant transition structures to that of the lowest
energy conformation of the starting material. The predictions are not
only for the forward direction for the reversible steps but also for the
equilibrium isotope effects for all reversible steps preceding the
transition structure in question.
13103.
́
(7) (a) Casarrubios, L.; Perez, J. A.; Brookhart, M.; Templeton, J. L.
J. Org. Chem. 1996, 61, 8358−8359. (b) Rasmussen, K. G.; Jørgensen,
K. A. J. Chem. Soc., Perkin Trans 1 1997, 1287−1292.
(8) Zhang, Y.; Lu, Z.; Wulff, W. D. Synlett 2009, 17, 2715−2739.
(9) Johnston, J. N.; Muchalski, H.; Troyer, T. L. Angew. Chem., Int.
Ed. 2010, 49, 2290−2298.
(10) Vetticatt, M. J.; Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc.
2010, 132, 13104−13107.
(11) Troyer, T. L.; Muchalski, H.; Hong, K. B.; Johnston, J. N. Org.
Lett. 2011, 13, 1790−1792.
(12) We are suggesting that formation of the two bonds between 1
and 2 and loss of N2 to yield the product aziridinium ion might occur
in one step by a concerted mechanism. The preceding protonation of
imine and subsequent deprotonation of the aziridinium ion yielding
aziridine are distinct mechanistic events.
(13) Singleton, D. A.; Thomas, A. A. J. Am. Chem. Soc. 1995, 117,
(27) Bell, R. P. The Tunnel Effect in Chemistry; Chapman & Hall:
9357−9358.
London, 1980; pp 60−63.
J
dx.doi.org/10.1021/jo302783d | J. Org. Chem. XXXX, XXX, XXX−XXX