X. F. Hu, L. Wu/Chemical Papers 66 (3) 211–215 (2012)
215
10.1021/ja00232a021.
Day, V. W., Klemperer, W. G., & Maltbie, D. J. (1987). Where
are the protons in H3V10O3−? Journal of the American
28
Chemical Society, 109, 2991–3002. DOI: 10.1021/ja00244a
022.
Gao, X., & Xu, J. (2006). The oxygen activated by the ac-
tive vanadium species for the selective oxidation of ben-
zene to phenol. Catalysis Letters, 111, 203–205. DOI:
10.1007/s10562-006-0148-1.
Groves, J. T., Bonchio, M., Carofiglio, T., & Shalyaev, K.
(1996). Rapid catalytic oxygenation of hydrocarbons by
ruthenium pentafluorophenylporphyrin complexes: Evidence
for the involvement of
a Ru(III) intermediate. Journal
of the American Chemical Society, 118, 8961–8962. DOI:
10.1021/ja9542092.
Fig. 6. H2O2 concentration change during oxidation reaction
in the presence of TEA (3 × 10−4 M), I (0.02 M), and
[(C4H9)4N]3[V10O28H3] (10−5 M).
Hagen, C. M., Vieille-Petit, L., Laurenczy, G., Su¨ss-Fink, G., &
Finke, R. G. (2005). Supramolecular triruthenium cluster-
based benzene hydrogenation catalysis: Fact or fiction?
Organometallics, 24, 1819–1831. DOI: 10.1021/om048976y.
Henry, M. (2002). Quantitative modelization of hydrogen-
bonding in polyoxometalate chemisty. Journal of Cluster Sci-
ence, 13, 437–458. DOI: 10.1023/a:1020559217894.
Jovanovic, S. V., Kónya, K., & Scaiano, J. C. (1995). Redox
reactions of 3,5-di-tert-butyl-1,2-benzoquinone. Implications
for reversal of paper yellowing. Canadian Journal of Chem-
istry, 73, 1803–1810. DOI: 10.1139/v95-222.
Koval, I. A., Gamez, P., Belle, C., Selmeczi, K., & Reedijk, J.
(2006). Synthetic models of the active site of catechol oxidase:
mechanistic studies. Chemical Society Reviews, 35, 814–840.
DOI: 10.1039/b516250p.
Lin, G., Reid, G., & Bugg, T. D. H. (2001). Extradiol oxidative
cleavage of catechols by ferrous and ferric complexes of 1,4,7-
triazacyclononane: Insight into the mechanism of the extra-
diol catechol dioxygenases. Journal of the American Chem-
ical Society, 123, 5030–5039. DOI: 10.1021/ja004280u.
May, Z., Simándi, L. I., & Németh, Z. (2006). A novel iron-
enhanced pathway for base-catalyzed catechol oxidation by
dioxygen. Reaction Kinetics and Catalysis Letters, 89, 349–
358. DOI: 10.1007/s11144-006-0147-7.
Morris, A. M., Pierpont, C. G., & Finke, R. G. (2009). Dioxyge-
nase catalysis by d0 metal–catacholate complexes containing
vanadium and molybdenum with H2(3,5-DTBC) and H2(3,6-
DTBC) substrates. Journal of Molecular Catalysis A: Chem-
ical, 309, 137–145. DOI: 10.1016/j.molcata.2009.05.008.
Ragsdale, S. W., & Kumar, M. (1996). Nickel-containing car-
bon monoxide dehydrogenase/acetyl-CoA synthase. Chemi-
cal Reviews, 96, 2515–2540. DOI: 10.1021/cr950058+.
Sigel, R. K. O., & Pyle, A. M. (2007). Alternative roles for
metal ions in enzyme catalysis and the implications for ri-
bozyme chemistry. Chemical Reviews, 107, 97–113. DOI:
10.1021/cr0502605.
oxidation of I but the consumption rate remained al-
most the same; then the H2O2 concentration began to
decrease, as shown in Fig. 6. TEA is known to react
with H2O2 to give Et3NO and H2O. However, just
the catalytic amount of TEA was added during the
autoxidation reaction in the research presented in this
paper. TEA would have been consumed prior to the
completion of the autoxidation reaction had it reacted
with the H2O2 formed so as to give Et3NO. Hence, we
believe that the H2O2 decomposition was caused by
V-polyoxometalate not TEA.
Conclusions
In the presence of a base, the dioxygenase reaction
changes to the oxidase reaction without an induction
period. ESR signals show that the semiquinone radical
binds to vanadium in the dioxygenation reaction but
exists in a free state in the presence of the base. V-
polyoxometalate can enhance the base-catalysed cat-
echol autoxidation reaction.
Acknowledgements. The generous financial support pro-
vided by the National Science Foundation of China (No.
20807036, No. 41076040) and the Yantai Science & Technol-
ogy Bureau (Project 2010160) is gratefully acknowledged.
References
Szigyártó, I. C., Simándi, L. I., Párkányi, L., Korecz, L., &
Schlosser, G. (2006). Biomimetic oxidation of 3,5-di-tert-
butylcatechol by dioxygen via Mn-enhanced base catalysis.
Inorganic Chemistry, 45, 7480–7487. DOI: 10.1021/ic0606
18v.
Weiner, H., & Finke, R. G. (1999). An all-inorganic, polyoxo-
metalate-based catechol dioxygenase that exhibits >100 000
catalytic turnovers. Journal of the American Chemical So-
ciety, 121, 9831–9842. DOI: 10.1021/ja991503b.
Yin, C. X., & Finke, R. G. (2005). Vanadium-based, extended
catalytic lifetime catechol dioxygenases: Evidence for a com-
mon catalyst. Journal of the American Chemical Society,
127, 9003–9013. DOI: 10.1021/ja051594e.
Yin, C. X., Sasaki, Y., & Finke, R. G. (2005). Autoxidation-
product-initiated dioxygenases: vanadium-based, record cat-
alytic lifetime catechol dioxygenase catalysis. Inorganic
Chemistry, 44, 8521–8530. DOI: 10.1021/ic050717t.
Bader, H., Sturzenegger, V., & Hoigné, J. (1988). Photomet-
ric method for the determination of low concentrations of
hydrogen peroxide by the peroxidase catalyzed oxidation
of N,N-diethyl-p-phenylenediamine (DPD). Water Research,
22, 1109–1115. DOI: 10.1016/0043-1354(88)90005-x.
Branca, M., Micera, G., Dessi, A., Sanna, D.,
& Ray-
mond, K. N. (1990). Formation and structure of the
tris(catecholato)vanadate(IV) complex in aqueous solution.
Inorganic Chemistry, 29, 1586–1589. DOI: 10.1021/ic00333a
030.
Cowan, J. A. (1998). Metal activation of enzymes in nucleic
acid biochemistry. Chemical Reviews, 98, 1067–1088. DOI:
10.1021/cr960436q.
Cox, D. D., & Que, L., Jr. (1988). Functional models for cate-
chol 1,2-dioxygenase. The role of the iron(III) center. Jour-
nal of the American Chemical Society, 110, 8085–8092. DOI: