10.1002/chem.202001373
Chemistry - A European Journal
COMMUNICATION
Kumar, K. Rama Rao, Tetrahedron Lett. 2011, 52, 5188-5191; c) H.-P.
Jia, D.R. Dreyer C.W. Bielawski, Adv. Synth. Catal. 2011, 353, 528-532;
d) D.R. Dreyer, H.-P. Jia, A.D. Todd, J. Geng, C.W. Bielawski, Org.
Biomol. Chem. 2011, 9, 7292-7295; e) H.-P. Jia, D.R. Dreyer, C.W.
Bielawski, Tetrahedron 2011, 67, 4431-4434; b) D.R. Dreyer, C.W.
Bielawski, Adv. Funct. Mat. 2012, 22, 3247-3253; f) M.R. Acocella, M.
Mauro, G. Guerra, ChemSusChem 2014, 7, 3279; g) F. Hu, M. Patel, F.
Luo, C. Flach, R. Mendelsohn, E. Garfunkel, H. He, M. Szostak, J. Am.
Chem. Soc. 2015, 137, 14473-14480; h) C. Su, R. Tandiana, J.
Balapanuru, W. Tang, K. Pareek, C.T. Nai, T. Hayashi, K.P. Loh, J. Am.
Chem. Soc. 2015, 137, 685-690; i) Y. Gao, P. Tang, H. Zhou, W. Zhang,
H. Yang, N. Yan, G. Hu, D. Mei, J. Wang, D. Ma, Angew. Chem. Int. Ed.,
2016, 55, 3124-3128; j) M.R. Acocella, L. D’Urso, M. Maggio, and G.
Guerra, ChemCatChem 2016, 8, 1915; k) Y.R. Girish, S. Pandit, S.
Pandit, M. De, Chem. Asian J. 2017, 12, 2393-2398; l) H. Wu, C. Su, R.
Tandiana, C. Liu, C. Qiu, Y. Bao, J. Wu, Y. Xu, J. Lu, D. Fan, K.P. Loh,
Angew. Chem. Int. Ed. 2018, 57, 10848-10853; m) L. Favaretto, J. An,
M. Sambo, A. De Nisi, C. Bettini, M. Melucci, A. Kovtun, A. Liscio, V.
Palermo, A. Bottoni, F. Zerbetto, M. Calvaresi, M. Bandini, Org. Lett.
2018, 20, 3705-3792; n) G. Meng, M. Patel, F. Luo, Q. Li, C. Flach, R.
Mendelsohn, E. Garfunkel, H. He, M. Szostak, Chem. Commun. 2019,
55, 5379-5382; o) M. Karthik, P. Suresh, ACS Sust.Chem.Eng. 2019, 7,
9028-9034; p) H. Wu, C. Qiu, Z. Zhang, B. Zhang, S. Zhang, Y. Xu, H.
Zhou, C. Su, K.P. Loh, DOI:10.1002/adsc.201901224.
Acknowledgements are made to University of Bologna for
financial support. PRIN-2017 project 2017W8KNZW was kindly
acknowledged. The research leading to these results has
received funding from the European Union's Horizon 2020
research and innovation programme under GrapheneCore2
785219 – Graphene Flagship.
Keywords: Alcohols • Carbocatalysis • Graphene oxide •
Dearomatization • Indole
[1]
a) S.P. Roche, J.A. Porco, Angew. Chem. Int. Ed. 2011, 50, 4068-4093;
b) C.-X. Zhuo, W. Zhang, S.-L. You, Angew. Chem. Int. Ed. 2012, 51,
12662-12686; c) C.-X. Zhuo, C. Zheng, S.-L. You, Acc. Chem. Soc. 2014,
47, 2558-2573; d) C. Zheng, S.-L. You, Chem. 2016, 1, 830-857; e)
Asymmetric Dearomatization Reactions (Ed. You, S.-L.), Wiley-VCH,
2016; f) W.-T. Wu, L. Zhang, S.L. You, Chem. Soc. Rev. 2016, 45, 1570-
1580; g) X.-W. Liang, C. Zheng, S.-L. You, Chem. Eur. J. 2016, 22,
11918-11933; h) S. Park, S. Chang, Angew. Chem. Int. Ed. 2017, 56,
7720-7738; i) J. An, M. Bandini, CHIMIA 2018, 72, 610-613; j) V.
Pirovano, Eur. J. Org. Chem. 2018, 1925-1945; j) J. Bariwal, L.G.
Voskressensky, E.V. Van der Eycken, Chem. Soc. Rev. 2018, 47, 3831-
3848; k) C. Zheng, S.-L. You, Nat. Prod. Rep. 2019, 36, 1589-1605.
For general reviews on the use of allylic/propargylic alcohols in organic
synthesis see: a) M. Bandini, M. Tragni, Org. Biomol. Chem., 2009,7,
1501-1507; b) M. Bandini, Angew. Chem. Int. Ed., 2011, 50, 994995; c)
M. Bandini; G. Cera; M. Chiarucci, Synthesis, 2012, 44, 504-512; d) B.
Sundararaju, M. Achard, C. Bruneau, Chem. Soc. Rev. 2012, 41, 4467-
4483; e) H. Li, C. Mazet, 2016, 49, 1232-1241; f) J. Zhang, J. Liao, Y.-F.
Wei, G. Cheng, R. Luo, Mini Rev.Org. Chem. 2018, 15, 476-487; f) H.
Qian, D. Huang, Y. Bi, G. Yan, Adv. Synth. Catal. 2019, 361, 3240-3280.
a) M. Kimura, M. Futamata, R. Mukai, Y. Tamaru, J. Am. Chem. Soc.
2005, 127, 4592-4593; b) B. M. Trost, J. Quancard, J. Am. Chem. Soc.
2006, 128, 6314-6315; c) X. Zhang, Z.-P. Yang, C. Liu, S.-L. You, Chem.
Sci. 2013, 4, 3239-3243; d) X. Zhang, L. Han, S.-L. You, Chem. Sci. 2014,
5, 1059-1063; e) N. Kumar, A. Maity, V.P. Gavit, A. Bisai, Chem.
Commun. 2018, 54, 9083-9086.
[2]
[10] a) G. Cera, M. Chiarucci, A. Mazzanti, M. Mancinelli, M. Bandini, Org.
Lett. 2012, 14, 1350-1353; b) C. Romano, M. Jia, M. Monari, E. Manoni,
M. Bandini, Angew. Chem. Int. Ed. 2014, 53, 13854-13857; c) L.
Rocchigiani, M. Jia, M. Bandini, A. Macchioni, ACS Catal. 2015, 5, 3911-
3915; d) R. Ocello, A. De Nisi, M. Jia, Q.-Q. Yang, P. Giacinto, A. Bottoni,
G.P. Miscione, M. Bandini, Chem. Eur. J. 2015, 21, 18445-18453; e) J.
An, A. Parodi, M. Monari, M. Castiñeira Reis, C. Silva Lopez, M. Bandini,
Chem. Eur. J. 2017, 23, 2442-2449; f) P. Giacinto, A. Bottoni, A. Garelli,
G.P. Miscione, M. Bandini, ChemCatChem. 2018, 10, 2442-2449; g) J.
An, L. Lombardi, S. Grilli, M. Bandini, Org. Lett. 2018, 20, 7380-7383; h)
A. Cerveri, O. Nieto Faza, C. Silva Lopez, S. Grilli, M. Monari, M. Bandini,
J. Org. Chem. 2019, 84, 6347-6355.
[3]
[11] In addition of 3aa, C(3) and C(5)-diallylated compound was observed in
the reaction crude (ca. 10%).
[4]
[5]
a) H. Zhang, R.-B. Hu, N. Liu, S.-X. Li, S.-D. Yang, Org. Lett. 2016, 18,
28-31; b) S. Gao, Z. Wu, X. Fang, A. Lin, H. Yao, Org. Lett. 2016, 18,
3906-3909.
[12] Although the role of water is not fully understood at the present, the
following aspects could be highlighted: 1) improving the solubilization of
GO in the reaction media; 2) acting as proton shuttle during the whole
reaction process; 3) increasing acidic sited of the GO via partial
interconversion of tertiary alcohol into highly enolizable ketones: A.
Dimiev, D.V. Kosynkin, L.B. Alemany, P. Chaguine, J.M. Tour, J. Am.
Chem. Soc. 2012, 134, 2815-2822.
For some representative very recent examples see: a) M. Zhu, C. Zheng,
X. Zhang, S.-L. You, J. Am. Chem. Soc. 2019, 141, 2636-2644; b) Y.-Z.
Cheng, Q.-R. Zhao, Q.-R. Zhao, X. Zhang, S.-L. You, Angew. Chem. Int.
Ed. 2019, 58, 18069-18074; c) J. Wu, Y. Dou, R. Guillot, C. Kouklovsky,
G. Vincent, J. Am. Chem. Soc. 2019, 141, 2832-2837; d) G.-J. Mei, X.
Tang, Y. Tasdan, Y. Lu, Angew. Chem. Int. Ed. 2020, 59, 648-652.
General reviews on carbocatalysis: a) D. R. Dreyer, C. W. Bielawski,
Chem. Sci. 2011, 2, 1233-1240; b); C.K. Chua, M. Pumera, Chem. Eur.
J. 2015, 21, 12550-12562; c) D. S. Su, G. Wen, S. Wu, F. Peng, R.
Schløgl, Angew. Chem. Int. Ed. 2017, 56, 936-964; d) X. Duan, H. Sun,
S. Wang, Acc. Chem. Res. 2018, 51, 678-687; e) P. Veerakumar, P.
Thanasekaran, T. Subburj, K.-C. Lin, C, 2018, 4, 54; f) M. Antonietti, N.
Lopez-Salas, A. Primo, Adv. Mat. 2019, 31, 1805719; g) C. Campisciano,
M. Gruttadauria, F. Giacalone, Chem.Cat.Chem. 2019, 11, 90-113.
A selection of comprehensive articles regarding the use of GO in organic
synthesis: a) D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem.
Soc. Rev. 2010, 39, 228-240; b) J. Pyun, Angew. Chem. Int. Ed, 2011,
50, 46-48; c) D.R. Dreyer, A.D. Todd, C.W. Bielawski, Chem. Soc. Rev.
2014, 43, 5288-5301; d) S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H.
Garcia, Chem. Rev. 2014, 114, 6179-6212; e) D. Haag, H.H. Kung, Top.
Catal. 2014, 57, 762-773; f) S. Gupta, R. Banu, C Ameta, R. Ameta, P.
B. Punjabi, Top. Curr. Chem. 2019, 377, 13.
[13] See SI for a complete list of conditions screening.
[14] The use of skatole led to the formation of C(2)-allylated compound,
exclusively.
[6]
[15] A. Kovtun, D. Jones, S. Dell’Elce, A. Liscio, V. Palermo, Carbon 2019,
143, 268-275.
[16] D.R. Dreyer, S. Murali, Y. Zhu, R.S. Ruoff, and C.W. Bielawski, J. Mat.
Chem. 2011, 21, 3443-3447.
[17] a) P. Giacinto, A. Bottoni, M. Calvaresi, F. Zerbetto, F. J. Phys. Chem. C
2014, 118, 5032-5040; b) K. Spyrou, M. Calvaresi, E. K. Diamanti, T.
Tsoufis, D. Gournis, P. Rudolf, F. Zerbetto, Adv. Funct. Mater. 2015, 25,
263-269; c) P. Giacinto, F. Zerbetto, A. Bottoni, M. Calvaresi, J. Chem.
Theory Comput. 2016, 12, 4082-4092; d) T. D. Marforio, A. Bottoni, P.
Giacinto, F. Zerbetto, M. Calvaresi, J. Phys. Chem. C 2017, 121, 27674-
27682.
[7]
[18] R. Ramírez-Jiménez, M. Franco, E. Rodrigo, R. Sainz, R. Ferrito, A.M.
Lamsabhi, J.L. Aceña, M. Belén Cid, J. Mater. Chem. A. 2018, 6, 12637-
12646.
[19] V. D. Ebajo Jr., C. R. L. Santos, G. V. Alea, Y. A. Lin, C.-H. Chen, Scient.
Reports 2019, 9, 15579.
[8]
[9]
S. Presolski, M. Pumera, Angew. Chem. Int. Ed. 2018, 57, 16713-16715.
For representative examples see a) D.R. Dreyer, H.-P. Jia, and C.W.
Bielawski, Angew. Chem. Int. Ed. 2010, 49, 6813-6816; b) A. Vijay
[20] As a partial support, when 1,2,3-trimethyl-indole was utilized in the
process, the reaction was completely inhibited.
This article is protected by copyright. All rights reserved.