10.1002/cmdc.201800520
ChemMedChem
FULL PAPER
Finally, the cells were stained with DAPI or PI (10µg/ml) and incubated
for 10 min in dark at room temperature and then examined under a
fluorescence microscope (Nikon Eclipse-Ni Japan) at an excitation (358
nm) and emission (461 nm) wavelengths.[45]
3772–3789.
[4]
[5]
N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37,
123–150.
P. Nockemann, B. Thijs, S. Pittois, J. Thoen, C. Glorieux, K.
Van Hecke, L. Van Meervelt, B. Kirchner, K. Binnemans, J.
Phys. Chem. B 2006, 110, 20978–20992.
A.-V. Mudring, Aust. J. Chem. 2010, 63, 544.
D. Prodius, F. Macaev, E. Stingaci, V. Pogrebnoi, V.
Mereacre, G. Novitchi, G. E. Kostakis, C. E. Anson, A. K.
Powell, Chem. Commun. 2013, 49, 1915.
Evaluation of antioxidant activity using
diphenylpicrylhydrazyl(DPPH)
a
stable free radical
[6]
[7]
The method has been adapted according to the recommendations by
Molyneux P (2004) as following: the calibration curve was built for DPPH,
by preparing the free radical solutions of 10-5 – 10-4 M in methanol and
measuring their absorbance at 516 nm. For the analyses, 10-4 M stock
solutions of DPPH and of the studied compound were prepared. Then,
six analytical solutions containing 1.5 mL DPPH stock solution and
varying volumes of analytical solution of the compound from 0 to 1.5 mL
along with the addition of methanol were prepared to reach the total
volume of 3 mL solutions. At the moment of preparation of each analytic
solution, the time was set for 30 min. After 30 min, the absorbance at 516
nm was read. For each solution, the percentage of the left DPPH is
calculated taking into consideration the absorbance of the reference
solution after 30 min, which is 100%. The molar ratio equals to the initial
concentration of the compound solution divided by the initial
concentration of the DPPH solution. Then, EC50 is determined which is
equal to the molar ratio at the 50% of the DPPH left in solution. Reaction
molecularity was determined as σ = 1/(2·EC50).
[8]
[9]
D. Prodius, H. S. Shah, J. Iqbal, A. Macaeva, A. Dimoglo, G.
E. Kostakis, N. Zill, F. Macaev, A. K. Powell, Chem.
Commun. 2014, 50, 4888–4890.
D. Prodius, V. Smetana, S. Steinberg, M. Wilk-Kozubek, Y.
Mudryk, V. K. Pecharsky, A.-V. Mudring, Mater. Horizons
2017, 4, 217–221.
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
A. Van den Bossche, E. De Witte, W. Dehaen, K.
Binnemans, Green Chem. 2018, 20, 3327–3338.
D. Prodius, M. Wilk-Kozubek, A.-V. Mudring, IUCr, Acta
Crystallogr. Sect. C Struct. Chem. 2018, 74, 653–658.
A. Balk, U. Holzgrabe, L. Meinel, Eur. J. Pharm. Biopharm.
2015, 94, 291–304.
Electron spin resonance investigation
R. F. M. Frade, A. Matias, L. C. Branco, C. A. M. Afonso, C.
M. M. Duarte, Green Chem. 2007, 9, 873–877.
V. Kumar, S. V. Malhotra, Bioorg. Med. Chem. Lett. 2009,
19, 4643–4646.
The detection of the 1O2 generated in solution in the presence of the
photocatalysts was carried out through electron spin resonance (ESR)
spectroscopy in order to confirm the activity of the photocatalysts. More
details are provided in our previous publication.[36]
N. Kaushik, P. Attri, N. Kaushik, E. Choi, Molecules 2012,
17, 13727–13739.
C. Suresh, H. Zhao, A. Gumbs, C. S. Chetty, H. S. Bose,
Bioorg. Med. Chem. Lett. 2012, 22, 1734–1738.
R. Ferraz, J. Costa-Rodrigues, M. H. Fernandes, M. M.
Santos, I. M. Marrucho, L. P. N. Rebelo, C. Prudêncio, J. P.
Noronha, Ž. Petrovski, L. C. Branco, ChemMedChem 2015,
10, 1480–1483.
Acknowledgements
V.B. and F.M. are grateful for the funding support offered by the Science
and Technology Center in Ukraine and the National Agency for Research
and Development of the Republic of Moldova under international project
17.80013.8007.10/6245STCU. F.M. and D.P. are grateful for the funding
offered by the BMBF project 01DK13029 and Prof. Dr. Annie K. Powell
(Karlsruhe Institute of Technology, Germany) for generous support. V.B.
and D.P. are grateful for the generous support from the Alexander von
Humboldt Foundation. J.I. is grateful to the Higher Education
Commission of Pakistan for the financial support through Project No. 20-
3733/NRPU/R&D/ 14/520. The authors acknowledge the contributions
and are grateful to Dr. A. Paul (ESR facilities) from the BAM Federal
Institute for Materials Research and Testing, Berlin, Germany. The
authors also gratefully acknowledge Prof. Dr. George E. Kostakis
(University of Sussex, UK) for help with preliminary single crystal x-ray
diffraction experiments.
[18]
R. F. M. Frade, A. A. Rosatella, C. S. Marques, L. C.
Branco, P. S. Kulkarni, N. M. M. Mateus, C. A. M. Afonso,
C. M. M. Duarte, Green Chem. 2009, 11, 1660–1665.
S. V. Malhotra, V. Kumar, Bioorg. Med. Chem. Lett. 2010,
20, 581–585.
[19]
[20]
[21]
[22]
[23]
X. Wang, C. A. Ohlin, Q. Lu, Z. Fei, J. Hu, P. J. Dyson,
Green Chem. 2007, 9, 1191–1197.
S. Marquis, B. Ferrer, M. Alvaro, H. García, D. R. Heinz, J.
Phys. Chem. B 2006, 110, 14956–14960.
K. S. Egorova, E. G. Gordeev, V. P. Ananikov, Chem. Rev.
2017, 117, 7132–7189.
A. R. Dias, J. Costa-Rodrigues, M. H. Fernandes, R. Ferraz,
C. Prudêncio, ChemMedChem 2017, 12, 11–18.
R. H. Liu, J. Nutr. 2004, 134, 3479S–3485S.
K. Scheit, G. Bauer, Carcinogenesis 2015, 36, 400–411.
M. Riethmüller, N. Burger, G. Bauer, Redox Biol. 2015, 6,
157–168.
Keywords: cancer
•
ionic liquids
•
organic salts
•
[24]
[25]
[26]
ectonucleotidase • antioxidant
References:
[27]
[28]
[29]
M. Cai, Y. Liang, M. Yao, Y. Xia, F. Zhou, W. Liu, ACS Appl.
Mater. Interfaces 2010, 2, 870–876.
[1]
K. R. Seddon, J. Chem. Technol. Biotechnol. 1997, 68,
351–356.
M. Cai, Y. Liang, F. Zhou, W. Liu, J. Mater. Chem. 2011, 21,
13399.
[2]
[3]
T. Welton, 1999, DOI 10.1021/CR980032T.
P. Wasserscheid, W. Keim, Angew. Chemie 2000, 39,
Y. Lion, M. Delmelle, A. Van de Vorst, Nature 1976, 263,
442–443.
7
This article is protected by copyright. All rights reserved.