Chloroquine and Chloroquine Analogues in NonViral Gene DeliVery
Journal of Medicinal Chemistry, 2006, Vol. 49, No. 22 6531
(13) Reineke, T. M.; Davis, M. E. Structural effects of carbohydrate-
containing polycations on gene delivery. 2. Charge center type.
Bioconjugate Chem. 2003, 14, 255-261.
enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclo-
dextrin-based particles. Cancer Biol. Ther. 2004, 3, 641-650.
(32) Mishra, S.; Webster, P.; Davis, M. E. PEGylation significantly affects
cellular uptake and intracellular trafficking of non-viral gene delivery
particles. Eur. J. Cell Biol. 2004, 83, 97-111.
(33) Pun, S. H.; Bellocq, N. C.; Liu, A. J.; Jensen, G.; Machemer, T.;
Quijano, E.; Schluep, T.; Wen, S. F.; Engler, H.; Heidel, J.; Davis,
M. E. Cyclodextrin-modified polyethylenimine polymers for gene
delivery. Bioconjugate Chem. 2004, 15, 831-840.
(34) Colombo, M. I.; Bertini, F. Properties of Binding-Sites for Chloro-
quine in Liver Lysosomal Membranes. J. Cell. Physiol. 1988, 137,
598-602.
(35) Kulkarni, R. P.; Mishra, S.; Fraser, S. E.; Davis, M. E. Single cell
kinetics of intracellular, nonviral, nucleic acid delivery vehicle
acidification and trafficking. Bioconjugate Chem. 2005, 16, 986-
994.
(36) Singh, N. P.; McCoy, M. T.; Tice, R. R.; Schneider, E. L. A simple
technique for quantitation of low levels of DNA damage in individual
cells. Exp. Cell Res. 1988, 175, 184-191.
(37) O’Brien, R.; Allison, J.; Hahn, F. Evidence for intercalation of
chloroquine into DNA. Biochim. Biophys. Acta 1966, 129, 622-
624.
(38) Parker, F. S.; Irvin, J. L. The Interaction of Chloroquine with Nucleic
Acids and Nucleoproteins. J. Biol. Chem. 1952, 199, 897-909.
(39) Doglia, S. M.; Albinsson, B.; Hiort, C.; Norden, B.; Graslund, A.
QuinacrinesSpectroscopic Properties and Interactions with Poly-
nucleotides. Biopolymers 1993, 33, 1431-1442.
(40) Schaffer, D. V.; Fidelman, N. A.; Dan, N.; Lauffenburger, D. A.
Vector unpacking as a potential barrier for receptor-mediated polyplex
gene delivery. Biotechnol. Bioeng. 2000, 67, 598-606.
(41) Lloyd, J. B. Lysosome membrane permeability: implications for drug
delivery. AdV. Drug DeliVery ReV. 2000, 41, 189-200.
(42) Rashid, F.; Horobin, R. W.; Williams, M. A. Predicting the behaviour
and selectivity of fluorescent probes for lysosomes and related
structures by means of structure-activity models. Histochem. J. 1991,
23, 450-459.
(43) Diwu, Z.; Chen, C. S.; Zhang, C.; Klaubert, D. H.; Haugland, R. P.
A novel acidotropic pH indicator and its potential application in
labeling acidic organelles of live cells. Chem. Biol. 1999, 6, 411-
418.
(44) Hurwitz, S. J.; Terashima, M.; Mizunuma, N.; Slapak, C. A. Vesicular
anthracycline accumulation in doxorubicin-selected U-937 cells:
participation of lysosomes. Blood 1997, 89, 3745-3754.
(45) de Duve, C.; de Barsy, T.; Poole, B.; Trouet, A.; Tulkens, P.; Van
Hoof, F. Commentary. Lysosomotropic agents. Biochem. Pharmacol.
1974, 23, 2495-2531.
(46) Duvvuri, M.; Krise, J. P. A novel assay reveals that weakly basic
model compounds concentrate in lysosomes to an extent greater than
pH-partitioning theory would predict. Mol. Pharmacol. 2005, 2, 440-
448.
(47) Lukacs, G. L.; Haggie, P.; Seksek, O.; Lechardeur, D.; Freedman,
N.; Verkman, A. S. Size-dependent DNA mobility in cytoplasm and
nucleus. J. Biol. Chem. 2000, 275, 1625-1629.
(14) Popielarski, S. R.; Mishra, S.; Davis, M. E. Structural effects of
carbohydrate-containing polycations on gene delivery. 3. Cyclodextrin
type and functionalization. Bioconjugate Chem. 2003, 14, 672-678.
(15) Irvin, J. L.; Irvin, E. M. Spectrophotometric and Potentiometric
Evaluation of Apparent Acid Dissociation Exponents of Various
4-Aminoquinolines. J. Am. Chem. Soc. 1947, 69, 1091-1099.
(16) Maxfield, F. R. Weak Bases and Ionophores Rapidly and Reversibly
Raise the Ph of Endocytic Vesicles in Cultured Mouse Fibroblasts.
J. Cell Biol. 1982, 95, 676-681.
(17) Poole, B.; Ohkuma, S. Effect of Weak Bases on the Intralysosomal
Ph in Mouse Peritoneal-Macrophages. J. Cell Biol. 1981, 90, 665-
669.
(18) Sonawane, N. D.; Szoka, F. C.; Verkman, A. S. Chloride accumula-
tion and swelling in endosomes enhances DNA transfer by polyamine-
DNA polyplexes. J. Biol. Chem. 2003, 278, 44826-44831.
(19) Wibo, M.; Poole, B. Protein Degradation in Cultured-Cells .2. Uptake
of Chloroquine by Rat Fibroblasts and Inhibition of Cellular Protein
Degradation and Cathepsin-B1. J. Cell Biol. 1974, 63, 430-440.
(20) Poole, B.; Ohkuma, S.; Warburton, M. J. Accumulation of Weakly
Basic Substances in Lysosomes and Inhibition of Intracellular Protein
Degradation. Acta Biol. Med. Ger. 1977, 36, 1777-1788.
(21) Behr, J. P. The proton sponge: A trick to enter cells the viruses did
not exploit. Chimia 1997, 51, 34-36.
(22) Allison, J. L.; Obrien, R. L.; Hahn, F. E. DNAsReaction with
Chloroquine. Science 1965, 149, 1111-1113.
(23) Cohen, S. N.; Yielding, K. L. Spectrophotometric studies of the
interaction of chloroquine with deoxyribonucleic acid. J. Biol. Chem.
1965, 240, 3123-3131.
(24) Egan, T. Structure-Function Relationships in Chloroquine and
Related 4-Aminoquinoline Antimalarials. Mini-ReV. Med. Chem.
2001, 1, 113-123.
(25) Egan, T. J.; Hunter, R.; Kaschula, C. H.; Marques, H. M.; Misplon,
A.; Walden, J. Structure-function relationships in aminoquino-
lines: Effect of amino and chloro groups on quinoline-hematin
complex formation, inhibition of beta-hematin formation, and anti-
plasmodial activity. J. Med. Chem. 2000, 43, 283-291.
(26) Kaschula, C. H.; Egan, T. J.; Hunter, R.; Basilico, N.; Parapini, S.;
Taramelli, D.; Pasini, E.; Monti, D. Structure-activity relationships
in 4-aminoquinoline antiplasmodials. The role of the group at the
7-position. J. Med. Chem. 2002, 45, 3531-3539.
(27) De, D. Y. D.; Krogstad, F. M.; Byers, L. D.; Krogstad, D. J.
Structure-activity relationships for antiplasmodial activity among
7-substituted 4-aminoquinolines. J. Med. Chem. 1998, 41, 4918-
4926.
(28) De, D. Y.; Byers, L. D.; Krogstad, D. J. Antimalarials: Synthesis of
4-aminoquinolines that circumvent drug resistance in malaria para-
sites. J. Heterocycl. Chem. 1997, 34, 315-320.
(29) Bellocq, N. C.; Pun, S. H.; Jensen, G. S.; Davis, M. E. Transferrin-
containing, cyclodextrin polymer-based particles for tumor-targeted
gene delivery. Bioconjugate Chem. 2003, 14, 1122-1132.
(30) Bellocq, N. C.; Kang, D. W.; Wang, X. H.; Jensen, G. S.; Pun, S.
H.; Schluep, T.; Zepeda, M. L.; Davis, M. E. Synthetic biocompatible
cyclodextrin-based constructs for local gene delivery to improve
cutaneous wound healing. Bioconjugate Chem. 2004, 15, 1201-1211.
(31) Pun, S. H.; Tack, F.; Bellocq, N. C.; Cheng, J. J.; Grubbs, B. H.;
Jensen, G. S.; Davis, M. E.; Brewster, M.; Janicot, M.; Janssens, B.;
Floren, W.; Bakker, A. Targeted delivery of RNA-cleaving DNA
(48) Lechardeur, D.; Sohn, K. J.; Haardt, M.; Joshi, P. B.; Monck, M.;
Graham, R. W.; Beatty, B.; Squire, J.; O’Brodovich, H.; Lukacs, G.
L. Metabolic instability of plasmid DNA in the cytosol: a potential
barrier to gene transfer. Gene Ther. 1999, 6, 482-497.
JM060736S