4
KASAKADO ET AL.
c) H. P. L. Gemoets, Y. Su, M. Shang, V. Hessel, R. Luque, T.
Noel, Chem. Soc. Rev. 2016, 45, 83. d) R. Karande, A. Schmid,
K. Buehler, Org. Process Res. Dev. 2016, 20, 361. e) S.
Kobayashi, Chem. Asian J. 2016, 11, 425. f) D. L. Hughes, Org.
Process Res. Dev. 2018, 22, 13. g) A. R. Bogdan, A. W.
Dombrowski, J. Med. Chem. 2019, 62, 6422. h) M. Marcus,
T. S. Moody, M. Smyth, S. Wharry, Org. Process Res. Dev. 2020,
24, 1802. i) M. Power, E. Alcock, G. P. McGlacken, Org. Process
Res. Dev. 2020, 24, 1814.
[9] a) H. Fujii, T. Yamada, K. Hayashida, M. Kuwada, A.
Hamasaki, K. Nobuhara, S. Ozeki, H. Nagase, Heterocycles
2012, 85, 2685. b) S. Masui, Y. Manabe, K. Hirao, A.
Shimoyama, T. Fukuyama, I. Ryu, K. Fukase, Synlett 2019, 30,
397. c) Y. -L. Tseng, M. -C. Liang, I. -C. Chen, Y. -K. Wu, Syn-
lett 2018, 29, 609.
[10] For recent work on Friedel-Crafts alkylation reactions
using benzyl and allyl alcohols, see: a)B. Michelet, U.
Castelli, E. Appert, M. Boucher, K. Vitse, J. Marrot, J.
Guillard, A. Martin-Mingot, S. Thibaudeau, Org. Lett. 2020,
22, 4944. b) R.-J. Tang, T. Milcent, B. Crousse, J. Org. Chem.
2018, 83, 14001. c) L. Bering, K. Jeyakumar, A. P.
Antonchick, Org. Lett. 2018, 20, 3911. d) D. Vukovic, E.
Richmond, E. Wolf, J. Moran, Angew. Chem. Int. Ed. 2017,
56, 3085. e) A. Suarez, M. Gohain, M. A. Fernandez-
Rodriguez, R. Sanz, J. Org. Chem. 2015, 80, 10421. f) X. Mo,
J. Yakiwchuk, J. Dansereau, J. A. McCubbin, D. G. Hall,
J. Am. Chem. Soc. 2015, 137, 9694. g) M. Bandini, M. Tragni,
Org. Biomol. Chem. 2009, 7, 1501. Also see a review: e)M.
Rueping, B. J. Nachtsheim, Beilstein J. Org. Chem 2010, 6
[11] For flow Friedel-Crafts acylation, see: a)S. Suga, A. Nagaki, J. -
i. Yoshida, Chem. Commun. 2003, 354. b) A. R. Bogdan, S. L.
Poe, D. C. Kubis, S. J. Broadwater, D. T. McQuade, Angew.
Chem. Int. Ed. 2009, 48, 8547. c) D. R. Snead, T. F. Jamison,
Angew. Chem. Int. Ed. 2015, 54, 983. d) H. Koo, H. Y. Kim, K.
Oh, Org. Lett. 2019, 21, 10063. e) H. Koo, Y. Kim, K. Oh, Org.
Chem. Front. 2019, 6, 1868.
[3] For examples on flow acid catalysis, see: polymer-supported
sulfonic acid:a)R. Amandi, P. Licence, S. K. Ross, O. Aaltonen,
M. Poliakoff, Org. Process Res. Dev. 2005, 9, 451. b) A. A.
Kulkarni, K.-P. Zeyer, T. Jacobs, A. Kienlea, Ind. Eng. Chem.
Res. 2007, 46, 5271. c) M. Rueping, T. Bootwicha, H. Baars, E.
Sugiono, J. Beilstein, Org. Chem. 2011, 7, 1680. d) S.
Nishimura, A. Shibata, K. Ebitani, ACS Omega 2018, 3, 5988.
e) J. S. Kwon, H. Choo, J. -W. Choi, J. Jae, D. J. Suh, K.-Y. Lee,
J.-M. Ha, Appl. Catal. A: Gen. 2019, 570, 238. f) H. Hu, H. Ota,
H. Baek, K. Shinohara, T. Mase, Y. Uozumi, Y. M. A. Yamada,
Org. Lett 2020, 22, 160. polymer-supported phosphoric acidg)
A. K. Mutyala, N. T. Patil, Org. Chem. Front. 2014, 1, 582. h) L.
Osorio-Planes, C. Rodriguez-Escrich, M. Pericas, A. Miquel,
Chem. Eur. J 2014, 20, 2367. polymer supported boronic acidi)
Y. Du, T. Barber, S. E. Lim, H. S. Rzepa, I. R. Baxendale, A.
Whiting, Chem. Commun. 2019, 55, 2916.
[4] For recent work on flow catalysis using silica supported sul-
fonic acid (SAS), see: M. H. Tucker, A. J. Crisci, B. N.
Wigington, N. Phadke, R. Alamillo, J. Zhang, S. L. Scott, J. A.
Dumesic, ACS Catal 2012, 2, 1865.
[12] Triflic acid is used for arylation of 1-adamantanol, see: a)K. K.
Laali, V. D. Sarca, T. Okazaki, A. Brock, P. Der, Org. Biomol.
Chem. 2005, 3, 1034. b) A. Wrona-Piotrowicz, A. Makal, J.
Zakrzewski, J. Org. Chem. 2020, 85, 11134.
[5] For our recent work on flow chemistry, see: a)M. Ueda, N. Imai,
S. Yoshida, H. Yasuda, T. Fukuyama, I. Ryu, Eur. J. Org. Chem
2017, 2017, 6483. b) S. Sumino, M. Uno, T. Fukuyama, I. Ryu, M.
Matsuura, A. Yamamoto, Y. Kishikawa, J. Org, Chem 2017, 82,
5469. c) S. Inuki, K. Sato, T. Fukuyama, I. Ryu, Y. Fujimoto,
J. Org. Chem. 2017, 82, 1248. d) T. Fukuyama, Y. Fujita, H.
Miyoshi, I. Ryu, S.-C. Kao, Y.-K. Wu, Chem. Commun 2018, 54,
5582. e) S. Masui, Y. Manabe, K. Hirao, A. Shimoyama, T.
Fukuyama, I. Ryu, K. Fukase, Synlett 2019, 30, 397. f) S.-C. Kao,
Y.-C. Lin, I. Ryu, Y.-K. Wu, Adv. Synth. Catal. 2019, 361, 3639. g)
H. Watanabe, M. Takemto, K. Adachi, Y. Okuda, A. Dakegata, T.
Fukuyama, I. Ryu, K. Wakamatsu, A. Orita, Chem. Lett 2020, 49,
409. Also see reviews: h)T. Fukuyama, M. T. Rahman, M. Sato, I.
Ryu, Synlett 2008, 151. i) T. Fukuyama, I. Ryu, Radical chemistry
by using flow microreactor technology. in Encyclopedia of Radi-
cals in Chemistry, Biology, and Materials, Vol. 2 (Eds: A. Studer,
C. Chatgilialoglu), Wiley, Chichester 2012, p. 1243. j) S. Sumino, T.
Fukuyama, I. Ryu, Radical chemistry in flow. in Science of Synthe-
sis: Free Radicals: Fundamentals and Applications in Organic Syn-
thesis (Eds: L. Fensterbank, C. Ollivier), Georg Thieme Verlag,
Stuttgart, in press.
[6] Supplied from MiChS Co. Ltd.K. Nobuhara, N. Inoue, M.
Kamimura, Jpn. Kokai Tokkyo Koho, JP 2010-203 2010, 794,
amount of sulfonic acid group immobilized on HO-SAS is esti-
mated as 0.41 mmol per gram of HO-SAS
[7] A. Furuta, T. Fukuyama, I. Ryu, Bull. Chem. Soc. Jpn. 2017,
90, 607.
[8] A. Furuta, Y. Hirobe, T. Fukuyama, I. Ryu, Y. Manabe, K.
Fukase, Eur. J. Org. Chem. 2017, 2017, 1365.
[13] Typical procedure: 1-adamantanol (1a, 65 mg, 0.43 mmol) was
dissolved in toluene (2a, 5.0 ml, 47.2 mmol) and placed in a
syringe equipped with a syringe pump. This solution was fed
into a stainless steel-made column (4.0 mm × 50 mm) filled
with HO-SAS (A, 377 mg, 0.155 mmol as -SO3H moiety), the
flow rate was 0.097 ml/min. This column was immersed in an
oil bath (120ꢀC). The reaction mixture firstly eluted for 10 min
was discarded, and the latter eluted reaction mixture was col-
lected for 10 min, evaporated to give the crude product which
was purified with column chromatography on SiO2 to give the
product 3a (16 mg, 0.068 mmol, 82% yield). 1H NMR
(500 MHz, CDCl3): 1.79 (m, 6H), 1.94 (m, 6H), 2.12 (m, 3H),
2.35 (s, 3H), 7.18 (d, 2H, J = 7.8 Hz), 7.30 (d, 2H, J = 7.8 Hz).
These chemical shifts were consistent with the literatureC.
Lohre, T. Droge, C. Wang, F. Glorius, Chem. Eur. J. 2011, 17,
6052.
[14] Time course experiment: 1-adamantanol (1a) (383 mg,
2.51 mmol) was dissolved in toluene (30 ml), and trans-
ferred (flow rate = 0.096 ml/min) by a HPLC pump. The
methanol solution was fed into a stainless steel column
(4.0 mm × 50 mm) filled with HO-SAS (A, 362 mg). A back-
pressure regulator (40 psi) was connected to the end of the
tube. Then, the column was immersed into an oil bath (120ꢀC).
The reaction mixture firstly eluted for 10 min was discarded.
The following portions were collected every 30 min (total fifth
time) in glass flasks and analyzed by GC. The combined reac-
tion mixture was evaporated and the crude product was purified