Organic Letters
Letter
Park, E.; Kim, B.; Sohn, E. J.; Oh, B.; Lee, E.-O.; Lee, H.-J.; Kim, S.-H.
Bioorg. Med. Chem. Lett. 2014, 24, 2560.
(4) Di Paolo, E. R.; Hamburger, M. O.; Stoeckli-Evans, H.; Rogers, C.;
Hostettmann, K. Helv. Chim. Acta 1989, 72, 1455. (b) Thelingwani, R.
S.; Dhansay, K.; Smith, P.; Chiballe, K.; Masimirembwa, C. M.
Xenobiotica 2012, 42, 989.
(5) For selected reviews on combinations of transition metals with
organocatalysts, see: (a) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38,
2745. (b) Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2999. (c) Loh, C. C.
J.; Enders, D. Chem.Eur. J. 2012, 18, 10212. (d) Du, Z.; Shao, Z. Chem.
Soc. Rev. 2013, 42, 1337.
(6) For an overview on silver organic chemistry, see: (a) Naodovic, M.;
Yamamoto, H. Chem. Rev. 2008, 108, 3132. (b) Belmont, P.; Parker, E.
Eur. J. Org. Chem. 2009, 6075. (c) Harmata, M. Silver in Organic
Chemistry; Wiley: Hoboken, NJ, 2010. (d) Abbiati, G.; Rossi, E. Beilstein
J. Org. Chem. 2014, 10, 481.
(7) For recent examples on organocatalysis and silver catalysis: Ding,
́ ́
Q.; Wu, J. Org. Lett. 2007, 9, 4959. (b) Arroniz, C.; Gil-Gonzalez, A.;
Semak, V.; Escolano, C.; Bosch, J.; Amat, M. Eur. J. Org. Chem. 2011,
3755. (c) Zhang, Q.-W.; Xiang, K.; Tu, Y.-Q.; Zhang, S.-Y.; Zhang, X.-
M.; Zhao, Y.-M.; Zhang, T.-C. Chem.Asian J. 2012, 7, 894. (d) Ortín,
I.; Dixon, D. J. Angew. Chem., Int. Ed. 2014, 53, 3462.
(8) For recent examples of organocatalytic sequential one-pot
reactions, see: (a) Jiang, K.; Jia, Z.-J.; Chen, S.; Wu, L.; Chen, Y.-C.
Chem.Eur. J. 2010, 16, 2852. (b) Enders, D.; Urbanietz, G.; Cassens-
Sasse, E.; Keeß, S.; Raabe, G. Adv. Synth. Catal. 2012, 354, 1481.
(c) Hong, B.-C.; Dange, N. S.; Ding, C.-F.; Liao, J.-H. Org. Lett. 2012,
14, 448. (d) Dange, N. S.; Hong, B.-C.; Lee, C.-C.; Lee, G.-H. Org. Lett.
2013, 15, 3914. (e) Li, X.; Yang, L.; Peng, C.; Xie, X.; Leng, H.-J.; Wang,
B.; Tang, Z.-W.; He, G.; Ouyang, L.; Huang, W.; Han, B. Chem.
Commun. 2013, 8692. (f) Chauhan, P.; Mahajan, S.; Loh, C. C. J.; Raabe,
G.; Enders, D. Org. Lett. 2014, 16, 2954.
molecules of (S)-N-Boc alanine should play a pivotal role in the
reactivity and selectivity of this supramolecular catalytic
assembly.16 One of the counteranions will interact with the
protonated quinuclidine moiety of the primary amine catalyst by
hydrogen bonding, thus shielding the Si-face of the iminium ion.
This represents the stereochemical defining element responsible
for π-facial discrimination. The second counteranion acts as a
mediator in a network of hydrogen bonds between the iminium
proton and 4-hydroxy-coumarin. Thereby the nucleophile
becomes activated while being set up to the Re-face for the
subsequent attack on the iminium ion. The nucleophilic attack
will yield intermediate 3 after hydrolysis, which will then enter
the second catalytic cycle. This cycle is initiated by coordination
of Ag(I) to the alkyne moiety and electrophilic activation that
allows for the hydroalkoxylation of the triple bond by attack of
the nucleophilic hydroxy group. Similar to Au(I)-catalyzed
cycloisomerizations, the trans-specific addition should follow
Markovnikov’s rule and electronic factors. Thus, depending on
the substituent on the alkyne, 5-exo-dig and 6-endo-dig ring
formations are observed (see Supporting Information for a more
detailed explanation). The products are obtained after
regeneration of the silver catalyst and proton transfer.
In conclusion, we have developed a convenient one-pot
sequential Michael addition/hydroalkoxylation by merging silver
catalysis with primary amine catalysts. The combination gives
rise to pharmaceutically interesting annulated coumarins in good
yields and excellent enantioselectivities. Further investigations
on the application of sequential catalysis by silver catalysis and
organocatalysis are in progress in our laboratories.
(9) (a) Rueping, M.; Merino, E.; Sugiono, E. Adv. Synth. Catal. 2008,
350, 2127. (b) Xu, D.-Q.; Wang, Y.-F.; Zhang, W.; Luo, S.-P.; Zhong, A.-
G.; Xia, A.-B.; Xu, Z.-Y. Chem.Eur. J. 2010, 16, 4177. (c) Wang, J.; Lao,
J.; Hu, Z.; Lu, R.-J.; Nie, S.; Du, Q.; Yan, M. ARKIVOC 2010, 9, 229.
(d) Mei, R.-Q.; Xu, X.-Y.; Peng, L.; Wang, F.; Tian, F.; Wang, L.-X. Org.
Biomol. Chem. 2013, 11, 1286. (e) Chang, X.; Wang, Q.; Wang, Y.; Song,
H.; Zhou, Z.; Tang, C. Eur. J. Org. Chem. 2013, 2164. (f) Suh, C. W.;
Han, T. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2013, 34, 1623.
(10) For selected examples of asymmetric conjugate additions to
enones, see: (a) Halland, N.; Hansen, T.; Jørgensen, K. A. Angew. Chem.,
Int. Ed. 2003, 42, 4955. (b) Kim, H.; Yen, C.; Preston, P.; Chin, J. Org.
Lett. 2006, 8, 5239. (c) Xie, J.-W.; Yue, L.; Chen, W.; Du, W.; Zhu, J.;
Deng, J.-G.; Chen, Y.-C. Org. Lett. 2007, 9, 413. (d) Dong, Z.; Wang, L.;
Chen, X.; Liu, X.; Lin, L.; Feng, X. Eur. J. Org. Chem. 2009, 5192.
(e) Kristensen, T. E.; Vestli, K.; Hansen, F. K.; Hansen, T. Eur. J. Org.
Chem. 2009, 5185. (f) Zhu, X.; Lin, A.; Shi, Y.; Guo, J.; Zhu, C.; Cheng,
Y. Org. Lett. 2011, 13, 4382.
ASSOCIATED CONTENT
* Supporting Information
Chemical synthesis, analytical data, and NMR spectra. This
material is available free of charge via the Internet at http://pubs.
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(11) (a) Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 9748.
(b) Moran, A.; Hamilton, A.; Bo, C.; Melchiorre, P. J. Am. Chem. Soc.
D.H. thanks the DFG (International Research Training Group
“Selectivity in Chemo- and Biocatalysis”-Seleca) and D.E. thanks
the European Research Council (ERC Advanced Grant 320493
“DOMINOCAT”) for financial support. Dedicated to Professor
Johann Mulzer on occasion of his 70th birthday.
2013, 135, 9091. (c) Cassani, C.; Martín-Rapun, R.; Arceo, E.; Bravo, F.;
́
Melchiorre, P. Nat. Protoc. 2013, 8, 325.
(12) Bartoli, G.; Bosco, M.; Carlone, A.; Pesciaioli, F.; Sambri, L.;
Melchiorre, P. Org. Lett. 2007, 9, 1403.
(13) Mahlau, M.; List, B. Angew. Chem., Int. Ed. 2013, 52, 518.
(14) Young, P. C.; Green, S. L. J.; Rosair, G. M.; Lee, A.-L. Dalton
Trans. 2013, 42, 9645.
(15) CCDC 1021374 (for 4g) contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via www.ccdc.cam.
(16) Moran, A.; Hamilton, A.; Bo, C.; Melchiorre, P. J. Am. Chem. Soc.
2013, 135, 9091.
REFERENCES
■
(1) Murray, R. D. H.; Medez, J.; Brown, S. A. The Natural Coumarins:
Occurrence, Chemistry and Biochemistry; Wiley: New York, 1982.
(b) Musa, M. A.; Cooperwood, J. S.; Khan, M. O. F. Curr. Med. Chem.
2008, 15, 2664.
(2) (a) Whitlon, D. S.; Sadowski, J. A.; Suttie, J. W. Biochemistry 1978,
17, 1371. (b) Fasco, M. J.; Principe, L. M. J. Biol. Chem. 1982, 257, 4894.
(c) Gebauer, M. Bioorg. Med. Chem. 2007, 15, 2414.
(3) (a) Miksicek, R. J. J. Steroid. Biochem. Mol. Biol. 1994, 49, 153.
(b) Morito, K.; Aomori, T.; Hirose, T.; Kinjo, J.; Hasegawa, J.; Ogawa,
S.; Inoue, S.; Muramatsu, M.; Masamune, Y. Biol. Pharm. Bull. 2002, 25,
48. (c) Kshirsagar, U. A.; Parnes, R.; Goldshtein, H.; Ofir, R.; Zarivach,
R.; Pappo, D. Chem.Eur. J. 2013, 19, 13575. (d) Cho, S.-Y.; Cho, S.;
D
dx.doi.org/10.1021/ol502551u | Org. Lett. XXXX, XXX, XXX−XXX